Answer:
A. your running speed 1.5 m/s
B. your mass 70 kg
C. your de Broglie wavelength
m
Explanation:
Hello there!
In this case, since the equation for the calculation of the Broglie wavelength is:

We can assume a running speed of about 1.5 m/s and a mass of 70 kg, so the resulting Broglie wavelength is:

Best regards!
The activation energy is the minimum amount of energy that particles must have in order for them to participate in a chemical reaction. During chemical reactions bonds are broken and formed. Particles must collide with sufficient energy in order for the initial bonds to be broken. The activation energy is that that initial minimum energy that the particles can have in order for the bonds to be broken. Stronger bonds would require more energy to be broken and therefore the activation energy for such would be higher.
Answer:
0.185M sulfuric acid
Explanation:
Based on the reaction:
H₂SO₄ + 2KOH → K₂SO₄ + 2H₂O
<em>1 mole of sulfuric acid reacts with 2 moles of KOH</em>
Initial moles of H₂SO₄ and KOH are:
H₂SO₄: 0.750L ₓ (0.470mol / L) = <em>0.3525 moles of H₂SO₄</em>
KOH: 0.700L ₓ (0.240mol / L) = <em>0.168 moles of KOH</em>
The moles of sulfuric acis that react with KOH are:
0.168mol KOH ₓ (1 mole H₂SO₄ / 2 moles KOH) = 0.0840 moles of sulfuric acid.
Thus, moles that remain are:
0.3525moles - 0.0840 moles = <em>0.2685 moles of sulfuric acid remains</em>
As total volume is 0.700L + 0.750L = 1.450L, concentration is:
0.2685mol / 1.450L = <em>0.185M sulfuric acid</em>
Answer:
The molar mass is: 18.02 g/mol.
Explanation:
- Mass of two moles of Hydrogen atoms (H2) = 2x 1 g/mol = 2 g/mol.
- Mass of one mole of water (H2O) = 2 g/mol + 16 g/mol = 18 g/mol.
1 mole of Hydrogen= 1.01, so if we have 2 moles of it here, that would be 2.02.
1 mole of Oxygen (that's all we have here)= 16.00
Once you add the two together (2.02+16.00), you will get 18.02.
I hope this made sense! Have a great day!
Answer:
2.01% to the nearest hundredth.
Explanation:
Percent error =[ (8.96-8.78) / 8.96]* 100
= 0.020089 * 100
= 2.0089 %