When you drop iodine on a leaf you may observe a colour change of orange/brown to a blue/black complex.
This is because in the leaf there are starch molecules that form a blue/black complex with the starch molecules.
hope that helps :)
Data Given:
Pressure = P = ?
Volume = V = 3.0 L
Temperature = T = 115 °C + 273 = 388 K
Mass = m = 75.0 g
M.mass = M = 44 g/mol
Solution:
Let suppose the Gas is acting Ideally. Then According to Ideal Gas Equation,
P V = n R T
Solving for P,
P = n R T / V ------ (1)
Calculating Moles,
n = m / M
n = 75.0 g / 44 g.mol⁻¹
n = 1.704 mol
Putting Values in Eq. 1,
P = (1.704 mol × 0.08205 atm.L.mol⁻¹.K⁻¹ × 388 K) ÷ 3.0 L
P = 18.08 atm
Answer:
All compounds are molecules
I got you! i hope i helped
Explanation:
The mass of nitrogen collected is mathematically given as
M-N2=0.025gram
<h3>What is the mass of nitrogen collected?</h3>
Question Parameters:
A sample weighing 2.000g
the liberated NH3 is caught in 50ml pipeful of H2SO4 (1.000ml = 0.01860g Na2O).
T=26.3c=299.3K
Pressure=745mmHg=745torr
Pressure of N2=745-25.2=719.8torr
Generally, the equation for the ideal gas is mathematically given as
PV=nRT
Therefore
719.8/760=45.6/1000=n*0.0821*299.3
n=0.00176*14
In conclusion, the Mass of N2
M-N2=0.00176*14
M-N2=0.025gram
Read more about Mass
brainly.com/question/4931057
Answer:
Their positive charge is located in the small nucleus
Explanation:
Ernest Rutherford performed the gold foil experiment in 1911 where he used alpha particles generated from a radioactive source to bombard a thin gold foil.
In his experiment, he observed that the bulk of the alpha particles passed through the gold foil, just a tiny fraction was deflected back. To explain his findings, Rutherford proposed that an atom is made of positively charged centre where nearly all the mass is concentrated called nucleus. Surrounding the nucleus is a large space containing electrons.