1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natalija [7]
2 years ago
7

One important event of prophase is that the chromosomes ___ and become _____

Biology
1 answer:
stiks02 [169]2 years ago
7 0
The answers are: condense; visible

Explanation:

In Prophase I, the chromosomes condense and become visible.
You might be interested in
The nephron is responsible for maintaining _______. select one:
stiv31 [10]
I say it is all of the above. 
4 0
3 years ago
The expected ratio of phenotypes among the progeny of a test cross is 1:1:1:1. Out of 200 total resulting progeny, 48 occur in o
Rzqust [24]

Answer: The progeny of this cross do not conform to a 1:1:1:1 ratio

Explanation: This is because out of the 200 total resulting progeny, we must have 50 in each phenotype class to conform with the 1:1:1:1 which is not so as we have 48 in one of the phenotypic class already. Therefore, it did not conform to the ratio.

3 0
3 years ago
Which step in transcription occurs first?
marusya05 [52]

Answer:

<em>Option 3 </em>: RNA polymerase attaches to the promoter.

Long Answer:

<h2>What is RNA? How is RNA produced?</h2>

RNA is a nucleic acid that is single stranded and comparable to DNA. DNA is also known as deoxyribonucleic acid, whereas RNA is short for ribonucleic acid. The word "ribo" in the name refers to the kind of sugar that makes up the nucleic acid backbone. Although RNA comes in a variety of forms, the three primary kinds all play crucial roles in the cell's translation of the DNA code into functional proteins. A copy of a gene's DNA sequence, known as messenger RNA, exits the cell's nucleus. A ribosome converts the sequence in the mRNA into a polypeptide (unprocessed protein). RRNA is used to make ribosomes (ribosomal RNA). The polypeptide's building blocks, amino acids, are joined to tRNAs (transfer RNAs). Transfer RNAs ensure that the right amino acid is delivered to the polypeptide that the ribosome is producing by matching with their complement bases on the mRNA.

<h2>What is transcription in biology?</h2>

Transcription is the biological process through which a complementary RNA strand is created using DNA as a template. This is the initial phase of either the creation of proteins or the transfer of information inside a cell. Genetic information is stored in DNA, which is subsequently used to transmit it to RNA during transcription and then control the synthesis of proteins during translation. Messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA are the three forms of RNA that may be produced (rRNA). Pre-commencement, initiation, elongation, and termination are the four phases of transcription. By attaching to a promoter region at the 5' end of a DNA strand, the RNA polymerase subunit starts pre-initiation, also known as template binding. The enzyme can access the template strand because the DNA strand is denatured, which separates the two complementary strands. Partner strand refers to the opposite strand. The DNA strand's promoter sequences are essential for the effective start of transcription.The identification of some of these motifs, including TATAAT and TTGACA in prokaryotes and TATAAAA and GGCCAATCT in eukaryotes, has been determined. Promoter sequences are particular sequences of the ribonucleotide bases making up the DNA strand (adenine, thymine, guanine, and cytosine). These patterns are referred to as cis-acting elements. For RNA polymerase to more easily attach to the promoter region in eukaryotes, an extra transcription factor is required.

<h2>What is the process of transcription and translation within biology? What are some examples?</h2>

First, the double-stranded DNA unzips, and the mRNA strand generated (the sense transcript) will be complementary to the original strand of DNA (therefore containing particular codons/triplets of bases) and connected to the DNA through hydrogen bonds between complementary bases. Following this, the mRNA generated will separate from the DNA, exit the nucleus through a hole, and enter the cytoplasm. Then it will connect to a ribosome, which is where translation takes place. Specific amino acids are delivered to the ribosome via tRNA anticodons that are corresponding to the mRNA codons (as they have specific amino acid binding sites). When two tRNA molecules are present in the ribosome, they keep the amino acids in place while a condensation process creates peptide bonds between them to form a dipeptide. This procedure is repeated to create a polypeptide chain or protein by condensation polymerization, which has a certain primary structure because it contains a particular amino acid sequence or order. The translation step is now. Due to specific interactions (such as ionic bonds, disulfide bridges, covalent bonds, and hydrogen bonds) between particular R groups, this structure folds in a specific way, resulting in the secondary structure, which can be an alpha helix or a beta pleated sheet, and then the functional tertiary (3D) protein, which has a specific structure and consequently a specific function. As a result, it influences a cell's structure and functionality, leading to its specialization. A quaternary structure can be created by making further changes to the tertiary structure. This happens when the tertiary structure is linked to another polypeptide chain (for example, collagen is a fibrous protein made up of three polypeptide chains wound around one another and joined by hydrogen bonds) or another non-polypeptide group via covalent bonding or London forces/permanent dipole forces/ion dipole forces to form a conjugated protein (for instance, the conjugated globular protein haemoglobin contains the prosthetic group Fe2+). Thus, some proteins with a particular structure and consequent function are generated during translation. These proteins alter the structure and function of the cell, leading to its specialization.

#SPJ6

3 0
2 years ago
Which statement describes potassium-argon dating?
Fiesta28 [93]

Answer: Potassium-40 decays into argon gas over time.

Explanation: Potassium-argon dating is a dating method used to determine the age of sedimentary rocks by comparing the proportion of K-40 to Ar-40 in a sample of rock, and knowing the decay rate of K-40.

Potassium-40 undergoes decay following first order kinetics as given below:

_{19}^{40}\textrm{K}\rightarrow _{18}^{40}\textrm{Ar}+_{0}^1e

3 0
3 years ago
Read 2 more answers
Name the state of matter of each layer of the earth
Marysya12 [62]

Answer:

Name the state of matter of each layer of the earth... The crust and the inner core are solid, whereas the outer core and inner mantle are liquid. The outer mantle is semi solid.

Explanation:

4 0
3 years ago
Other questions:
  • Given HIJ ≌ MNO and HI = 15, IJ = 8, and JH = 11. Solve for OM.
    13·1 answer
  • What is the difference between derived units and base units?
    6·2 answers
  • What two tissues are found within the vein that makes up the vascular system of the plant?
    11·1 answer
  • Write an article for publication on the topic;effects of drug abuse.​
    7·1 answer
  • Which statement is true for some photosynthesizing animals?
    15·2 answers
  • Which method best helps to prevent wind erosion?
    14·1 answer
  • Which will cool down faster overnight, the water in the pool of the air above the water pool?
    12·1 answer
  • Which of the following examples show the influence coal has had on human activity
    10·1 answer
  • Can you identify the characteristics of plants that typically grow in early and late stages of secondary succession in an abando
    13·1 answer
  • Plankton are most commonly found in the _______. a. pelagic zone b. littoral zone c. benthic zone d. all of the above please sel
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!