Problem 1 Answer: 
<u>Simplify both sides of the equation</u>
<u></u>
<u></u>
<u></u>
<u></u>
<u></u>
<u></u>
<u></u>
<u>Add 6 to both sides</u>


<u></u>
<u>Divide both sides by 2</u>
<u></u>
<u></u>
<u></u>
<u></u>
----------------------------------------------------------------
Problem 2 Answer: 
<u></u>
<u>Simplify both sides of the equation</u>
<u></u>
<u></u>
<u></u>
<u></u>
<u></u>
<u>Subtract 5 from both sides</u>
<u></u>
<u></u>
<u></u>
<u></u>
<u></u>
<u>Divide both sides by -5</u>
<u></u>
<u></u>
<u></u>
<u></u>
----------------------------------------------------------------
Problem 3 Answer: 
<u></u>
<u>Simplify both sides of the equation</u>
<u></u>
<u></u>
<u></u>
<u></u>
<u></u>
<u>Subtract 120 from both sides</u>
<u></u>
<u></u>
<u></u>
<u></u>
<u></u>
<u>Divide both sides by 12</u>
<u></u>
<u></u>
<u></u>
<u></u>
----------------------------------------------------------------
Problem 4 Answer: 
<u></u>
<u>Move all terms to the left:</u>
<u></u>
<u></u>
<u></u>
<u>Multiply parentheses</u>
<u></u>
<u></u>
<u></u>
<u>Add all the numbers together, and all the variables</u>
<u></u>
<u></u>
<u></u>
<u>Move all terms containing x to the left, all other terms to the right</u>
<u></u>
<u></u>
----------------------------------------------------------------
Problem 5 Answer: 
Answer:
(f - g)(x) = x² - 3x - 70
General Formulas and Concepts:
<u>Pre-Algebra</u>
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = x² - 2x - 63
g(x) = x + 7
(f - g)(x) is f(x) - g(x)
<u>Step 2: Find (f - g)(x)</u>
- Substitute: (f - g)(x) = x² - 2x - 63 - (x + 7)
- Distribute -1: (f - g)(x) = x² - 2x - 63 - x - 7
- Combine like terms (x): (f - g)(x) = x² - 3x - 63 - 7
- Combine like terms (Z): (f - g)(x) = x² - 3x - 70
In order to get the answer to this question you have to remember that if the exponent is positive you need to move to the right, and if the exponent is negative you got to move to the left.

- Positive so move to the right 8 times....


Therefore the answer is "490000000."
Hope this helps!
Nonportrit
3 the radius of both bases are the sams
Answer:
Both Lindsay and Sharon are wrong.
Step-by-step explanation:
When Lindsay was doing her problem, she put 100 on the bottom and 45 on the top, when it should have been the other way around.
Sharon would have been correct if she had used the right measuring unit. 2/5 of a milliliter should have been 2/5 of a liter.