The value of f(x) - g(x) and f(x) + g(x) are 52 and 0
<h3>Sum and differences of function</h3>
Given the following function expressed as:
f(x) = 11x + 2x^2 and;
g (x) = -7x - 3x^2 + 4
Taking the sum of the function
f(x) + g(x) = 11x + 2x^2 -7x - 3x^2 + 4
f(x) + g(x) = -x^2 + 4x + 4
If x = 2,
f(x) + g(x) = -4 + 8 + 4
f(x) + g(x) = 0
For the difference;
f(x) - g(x) = 11x + 2x^2 + 7x + 3x^2 - 4
f(x) - g(x) = 5x^2 + 18x - 4
If x = 2,
f(x) - g(x) = 5(4) + 36 - 4
f(x) - g(x) = 52
Hence the value of f(x) - g(x) and f(x) + g(x) are 52 and 0
Learn more on sum of function here: brainly.com/question/17431959