The apparent topography exhibited by minerals in thin section as a consequence of refractive index.
Answer:
Lower heat capacity
Explanation:
The heat or thermal capacity is a physical property defined as the amount of heat a material need in order to elevate a unit in its temperature, this means that water increases its temperature more easily than land.
I hope you find this information useful and interesting! Good luck!
Given what we know, we can confirm that if further increases in substrate concentration do not result in further increases in reaction rate, then an enzyme is likely saturated.
<h3>What does it mean for an enzyme to be saturated?</h3>
Enzymes work by binding to the substrate in specific zones of the enzyme. The zones are known as the active sites on enzymes. Since enzymes have a limited amount of these zones, once they are all bonded to a substrate, we can say that it is saturated.
Therefore, the saturation of enzymes allows us to explain how further increases in substrate concentration do not result in further increases in reaction rate.
To learn more about enzymes visit:
brainly.com/question/24811456?referrer=searchResults
Answer:
Explanation:
Your strategy here will be to
use the chemical formula of carbon dioxide to find the number of molecules of
CO
2
that would contain that many atoms of oxygen
use Avogadro's constant to convert the number of molecules to moles of carbon dioxide
use the molar mass of carbon dioxide to convert the moles to grams
So, you know that one molecule of carbon dioxide contains
one atom of carbon,
1
×
C
two atoms of oxygen,
2
×
O
This means that the given number of atoms of oxygen would correspond to
4.8
⋅
10
22
atoms O
⋅
1 molecule CO
2
2
atoms O
=
2.4
⋅
10
22
molecules CO
2
Now, one mole of any molecular substance contains exactly
6.022
⋅
10
22
molecules of that substance -- this is known as Avogadro's constant.
In your case, the sample of carbon dioxide molecules contains
2.4
⋅
10
22
molecules CO
2
⋅
1 mole CO
2
6.022
⋅
10
23
molecules CO
2
=
0.03985 moles CO
2
Finally, carbon dioxide has a molar mass of
44.01 g mol
−
1
, which means that your sample will have a mass of
0.03985
moles CO
2
⋅
44.01 g
1
mole CO
2
=
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
∣
∣
a
a
1.8 g
a
a
∣
∣
−−−−−−−−−
The answer is rounded to two sig figs, the number of sig figs you have for the number of atoms of oxygen present in the sample.
Answer:
0.37atm
Explanation:
Given parameters:
Initial pressure = 0.25atm
Initial temperature = 0°C = 273K
Final temperature = 125°C = 125 + 273 = 398K
Unknown:
Final pressure = ?
Solution:
To solve this problem, we use a derivative of the combined gas law;
=
P and T are pressure and temperature
1 and 2 are initial and final values
=
P2 = 0.37atm