Human activities can contribute excess amounts of nitrogen and phosphorus into water. Therefore,human causes of eutrophicationinclude the use of agricultural fertilizers. Other causes include sewage and aquaculture, which is the growing or farming of fish, shellfish and aquatic plants.
Answer:
Well, carbon monoxide can be created from formic acid by adding sulphuric acid which will dehydrate said formic acid:
HCOOH
−
→
−
−
−
H
2
SO
4
CO+H
2
O
HCOOH→HX2SOX4CO+HX2O
Therefore, we can imagine the reverse reaction theoretically, which would make carbon monoxide an acidic oxide. However, the forward reaction does not proceed easily and it needs both the high acidity of sulphuric acid and its strong dehydrative properties to actually work. And your question mentions using hot, concentrated sodium hydroxide to make the reverse one work.
Most oxides that are classified as acidic or basic either have a very electrophilic central atom (e.g.
CO
2
COX2
) which can be attacked by the weak nucleophile water (which in turn can then release an acidic proton), or they have a high charge density on the oxygen which allows it to abstract a proton from water directly. Carbon monoxide is neither. If you check out its molecular orbitals, you will notice that even though carbon is partially positive it has the largest HOMO contribution, meaning a proton would be more likely to attatch to the carbon side — which doesn’t want one at all. The LUMO is, luckily, also more carbon-centred, meaning nucleophilic attacks on carbon are possible. However, it is also degenerate due to the double bond so that an attack is not favoured.
Thus, the carbon monoxide molecule is one that won’t react with water at all and totally defies the concept of acidic/basic oxides.
Abbreviations:
HOMO is a widely used abbreviation for the Highest Occupied Molecular Orbital, i.e. the one with the highest energy that still contains electrons. It is usually the orbital that will attack nucleophilicly or that will be attacked electrophilicly.
LUMO is a widely used abbreviation for the Lowest Unoccupied Molecular Orbital, i.e. the virtual (unoccupied) orbital that has the lowest energy. When considering a nucleophilic attack, the attacking electrons will usually interact with the LUMO. Electrophiles attack with other molecules’ HOMO with their LUMO.
Explanation:
Well i suspect it to be water-- yes water btw the answers are 1B 2B 3D 4B 5B 100% Correct
Answer:atoms involved in reaction. Mass remains same in reaction
Explanation: hug would be fine!
Answer is: volume of H₂SO₄ is 42.1 mL.<span>
Chemical reaction: H</span>₂SO₄ + 2NaOH → Na₂SO₄ + 2H₂O.<span>
c(H</span>₂SO₄) = 0,4567 M = 0,4567 mol/L.<span>
V(NaOH) = 30 mL </span>÷ 1000 mL/L <span>= 0,03 L.
c(NaOH) = 0,321 M = 0,321 mol/L.
n(NaOH) = c(NaOH) · V(NaOH).
n(NaOH) = 0,321 mol/L · 0,030 L.
n(NaOH) = 0,00963 mol.
From chemical reaction: n(H</span>₂SO₄) : n(NaOH) = 1 : 2.<span>
n(H</span>₂SO₄) = 0,01926 mol.<span>
V(H</span>₂SO₄) = n(H₂SO₄) ÷ c(H₂SO₄).<span>
V(H</span>₂SO₄) = 0,01926 mol ÷ 0,4567 mol/L.<span>
V(H</span>₂SO₄<span>) = 0,0421 L = 42,1 mL.</span>