A small sample of methane burns, releasing 120.0 kJ of heat and doing 830.0 kJ of work. The total energy released is -950.0 kJ.
Energy is a property that is transferred to a physical system, recognizable in the performance of work and in the form of heat and light.
A small sample of methane undergoes combustion. As the hot gas mixture expands, it releases energy (E).
- It releases 120.0 kJ of heat. By convention, when heat is released, we assign it a negative sign. Thus, q = -120.0 kJ.
- It does 830.0 kJ of work. By convention, when the system does work on the surroundings, we assign it a negative sign. Thus, w = -830.0 kJ.
The change in the energy is the sum of the heat released and the work done.
ΔE = q + w = -120.0 kJ + (-830.0 kJ) = -950.0 kJ
A small sample of methane burns, releasing 120.0 kJ of heat and doing 830.0 kJ of work. The total energy released is -950.0 kJ.
Learn more about energy here: brainly.com/question/13881533
Answer:
a
Explanation:
first form your equation and it is C3H8+5O2-4H2O+3CO2 44g of C3H8 produce 3moles of CO2/400g of C3H8 produce x the answer is 27.27moles when you cross multiply
To create the liquid and superfluid states you cool down helium gas to a few degrees above absolute zero
Answer:Two more hydrogen atoms will be required
Explanation:
A carbon atom has 4 valence electrons in its outermost shell,thus it can form 4 covalent bonds.Two pairs of electrons are shared in a double bond between C-C atom.two more electrons are left which is shared with two hydrogen atoms.