<span>this is a limiting reagent problem.
first, balance the equation
4Na+ O2 ---> 2Na2O
use both the mass of Na and mass of O2 to figure out how much possible Na2O you could make.
start with Na and go to grams of Na2O
55.3 gNa x (1molNa/23.0gNa) x (2 molNa2O/4 molNa) x (62.0gNa2O/1molNa2O) = 75.5 gNa2O
do the same with O2
64.3 gO2 x (1 molO2/32.0gO2) x (2 molNa2O/1 mol O2) x (62.0gNa2O/1molNa2O) = 249.2 g Na2O
now you must pick the least amount of Na2O for the one that you actually get in the reaction. This is because you have to have both reacts still present for a reaction to occur. So after the Na runs out when it makes 75.5 gNa2O with O2, the reaction stops.
So, the mass of sodium oxide is
75.5 g</span>
Answer:
There will 3.95 grams of Na2 and H2O that should be added to form a concentric required solution.
Answer:

Explanation:
Hello!
In this case, since the combustion reaction of methanol is:

In such a way, since there is 1:3/2 mole ratio between methanol and oxygen, we can compute the moles of oxygen that are needed to burn 2.56 moles of methanol as shown below:

Best regards!
<u>Answer:</u> The temperature to which the gas in the syringe must be heated is 720.5 K
<u>Explanation:</u>
To calculate the volume when temperature and pressure has changed, we use the equation given by combined gas law.
The equation follows:

where,
are the initial pressure, volume and temperature of the gas
are the final pressure, volume and temperature of the gas
We are given:

Putting values in above equation, we get:

Hence, the temperature to which the gas in the syringe must be heated is 720.5 K