Remark
This is quite a nice little problem. It takes a minute or three to figure out the answer, and when you do, you will be certain that you have been tricked. It is a little like the egg of Columbus.
Solution
The Base of Triangle ABN is AB
The Base of Triangle CDM is CD
The height of both given triangles is h. That is the distance between the two parallel lines.
Area ABN = 1/2*AB * h = 23 cm^2
Area CDM = 1/2*CD * h = 18 cm^2
Now the Area of the trapezoid is
Area_Trapezoid = 1/2 * h (AB + CD) Using the distributive property Remove the brackets.
Area_Trapezoid = 1/2*AB*h + 1/2*CD*h Did you notice something? Those terms are just the area of the triangles (written above.)
Area Trapezoid = 23 + 18 = 41 cm^2 <<<< Answer
<h3>Answer: Approximately 191 bees</h3>
================================================
Work Shown:
One way to express exponential form is to use
y = a*b^x
where 'a' is the initial value and 'b' is linked to the growth rate.
Since we're told 34 bees are there initially, we know a = 34.
Then after 4 days, we have 48 bees. So we can say,
y = a*b^x
y = 34*b^x
48 = 34*b^4
48/34 = b^4
24/17 = b^4
b^4 = 24/17
b = (24/17)^(1/4)
b = 1.090035
Which is approximate.
The function updates to
y = a*b^x
y = 34*(1.090035)^x
------------------------
As a way to check to see if we have the right function, plug in x = 0 and we find:
y = 34*(1.090035)^x
y = 34*(1.090035)^0
y = 34*(1)
y = 34
So there are 34 bees on day 0, ie the starting day.
Plug in x = 4
y = 34*(1.090035)^x
y = 34*(1.090035)^4
y = 34*1.4117629
y = 47.9999386
Due to rounding error we don't land on 48 exactly, but we can round to this value.
We see that after 4 days, there are 48 bees.
So we confirmed the correct exponential function.
------------------------
At this point we can find out how many bees there are expected to be after 20 days.
Plug in x = 20 to get
y = 34*(1.090035)^x
y = 34*(1.090035)^20
y = 190.672374978452
Round to the nearest whole number to get 191.
There are expected to be roughly 191 bees on day 20.
Kinetic energy is usually measured in units of Joules and can be written as “J”.
Answer:
Part 1
Type II error
Part 2
No ; is not ; true
Step-by-step explanation:
Data provided in the question
Mean = 100
The Random sample is taken = 43 students
Based on the given information, the conclusion is as follows
Part 1
Since it is mentioned that the classes are successful which is same treated as a null rejection and at the same time it also accepts the alternate hypothesis
Based on this, it is a failure to deny or reject the false null that represents type II error
Part 2
And if the classes are not successful so we can make successful by making type I error and at the same time type II error is not possible
Therefore no type II error is not possible and when the null hypothesis is true the classes are not successful
he ate 40 percent of the cookies