We will convert the 1dm3 in terms of cm3 as follows:
1dm^3 = (10 cm)^3
= 1000 cm^3
The mass of platinum is equal to 900 lb.
Then we will convert the mass in terms of grams as follows:
1 lb = 453.6 g
900 = 900 x 453.6 g
= 408240 g
Then density of platinum is equal to 21.4 g/cm^3
We will calculate the volume of platinum in mass 408240 g as follows:
Volume of platinum = mass of platinum / density of platinum
= 408240 g / 21.4 g/cm^3
= 19076.6 cm^3
The total volume of platinum is 19076.6 cm^3
The volume of platinum in 1 L bar is 1000cm^3
So, to calculate the number of bars we will use the formula as follows;
Number of bars = volume of platinum available / volume of platinum required in 1 L bar
= 19076.6 cm^3 / 1000 cm^3
= 19
So, the number of bars are 19.
The image produced is magnified and real.
Answer:
Hipparchus was an ancient Greek who classified stars based on the brightness in 129 B.C. He grouped the brightest stars and ranked them 1 (first magnitude) and dimmest stars as 6 (sixth magnitude). Thus, the smaller numbers indicated brighter stars. Now, the scale extends in negative axis as well. More the negative number, brighter is the star. For example, Sun has magnitude -26.74.
This the apparent magnitude which means the classification is based on the brightness of the star as it appears from the Earth.
in cgs system, plank's constant= h=6.626 x10⁻²⁶ erg s
Value of Plank's constant in SI system= 6.626 x10⁻³⁴ Js
now 1 Joule= 10⁷ ergs
so h= 6.626 x10⁻³⁴ Js (10⁷ ergs/1J)
h=6.626 x10⁻²⁷ erg s
Answer:
c
Explanation:
all the others r physical