Answer:
Option (A)
Explanation:
A flowchart can be described as a representation of a process or an algorithm in a sequential manner (stepwise) in the form of diagrams. These steps are made of symbols that are connected to one another with the help of arrows. These arrows are used to show the direction of the process.
There are mainly four symbols that are used to describe a flow chart, which includes-
- Oval or Pill Shape- This type of symbol is used to depict the start or the end of a process.
- Rectangle Shape- This type of symbols is used to describe the process
.
- Diamond Shape- This type of symbol is used to represent decision
s.
- Parallelogram- This type of symbol is used for the representation of an input or an output.
Thus, the correct answer is option (A).
Answer:
<u>20 Minutes</u>
<u></u>
Explanation:
Well we know Mph (Miles per hour) is distance over time : 
R (rate) = 60
d (distance) = 20
t (time) = Unknown
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
R =
↓
60 =
↓
t = 
↓
t =
or 0.3333
<em>So basically it would take one third of an hour. Lets change these units to minutes.</em>
60 * 0.333333 = 20
<em>So it would take you </em><u><em>20 minutes</em></u><em> to drive 20 miles on a bus that drives 60 mph</em>
<em />
Hope that helps
<em>~Siascon~</em>
When 2 waves interefere (or collide with eachother), it usually affects the crest of the wave. If both waves collide with both crests, it will create an amplified crest, and the waves will pass through eachother afterwards. If a trough of a wave meets a crest, it will cause the crest to be lowered shortly before both continue on.
Answer: The velocity with which the sand throw is 24.2 m/s.
Explanation:
Explanation:
acceleration due to gravity, a = 3.9 m/s2
height, h = 75 m
final velocity, v = 0
Let the initial velocity at the time of throw is u.
Use third equation of motion
The velocity with which the sand throw is 24.2 m/s.
Answer:
Explanation:
Point beneath you forms a beautiful iridescent green
refractive index of Gasoline 
Wavelength of Green light is 
Here light first traverse from air(n=1) to gasoline , it reflects from front surface of gasoline(n=1.38) so it suffers a phase change. After this light reflect from rear surface of gasoline and there is a decrease in refractive index(n=1.38 to n=1.33), so there is no phase change occurs .
For constructive interference

here t= thickness of gasoline film
n=refractive index
for 

