Answer:34
Step-by-step explanation:
Weight of Alex:44
Weight of Bob:44*(3/4)
=33
Combined weight of all of them:111
Combined weight of Alex and Bob=44+33=77
Cole's weight=111-77 =34
<h2>
Hello!</h2>
The answer is:
The second option,
![(\sqrt[m]{x^{a} } )^{b}=\sqrt[m]{x^{ab} }](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D%3D%5Csqrt%5Bm%5D%7Bx%5E%7Bab%7D%20%7D)
<h2>
Why?</h2>
Discarding each given option in order to find the correct one, we have:
<h2>
First option,</h2>
![\sqrt[m]{x}\sqrt[m]{y}=\sqrt[2m]{xy}](https://tex.z-dn.net/?f=%5Csqrt%5Bm%5D%7Bx%7D%5Csqrt%5Bm%5D%7By%7D%3D%5Csqrt%5B2m%5D%7Bxy%7D)
The statement is false, the correct form of the statement (according to the property of roots) is:
![\sqrt[m]{x}\sqrt[m]{y}=\sqrt[m]{xy}](https://tex.z-dn.net/?f=%5Csqrt%5Bm%5D%7Bx%7D%5Csqrt%5Bm%5D%7By%7D%3D%5Csqrt%5Bm%5D%7Bxy%7D)
<h2>
Second option,</h2>
![(\sqrt[m]{x^{a} } )^{b}=\sqrt[m]{x^{ab} }](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D%3D%5Csqrt%5Bm%5D%7Bx%5E%7Bab%7D%20%7D)
The statement is true, we can prove it by using the following properties of exponents:

![\sqrt[n]{x^{m} }=x^{\frac{m}{n} }](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%5E%7Bm%7D%20%7D%3Dx%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%20%7D)
We are given the expression:
![(\sqrt[m]{x^{a} } )^{b}](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D)
So, applying the properties, we have:
![(\sqrt[m]{x^{a} } )^{b}=(x^{\frac{a}{m}})^{b}=x^{\frac{ab}{m}}\\\\x^{\frac{ab}{m}}=\sqrt[m]{x^{ab} }](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D%3D%28x%5E%7B%5Cfrac%7Ba%7D%7Bm%7D%7D%29%5E%7Bb%7D%3Dx%5E%7B%5Cfrac%7Bab%7D%7Bm%7D%7D%5C%5C%5C%5Cx%5E%7B%5Cfrac%7Bab%7D%7Bm%7D%7D%3D%5Csqrt%5Bm%5D%7Bx%5E%7Bab%7D%20%7D)
Hence,
![(\sqrt[m]{x^{a} } )^{b}=\sqrt[m]{x^{ab} }](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D%3D%5Csqrt%5Bm%5D%7Bx%5E%7Bab%7D%20%7D)
<h2>
Third option,</h2>
![a\sqrt[n]{x}+b\sqrt[n]{x}=ab\sqrt[n]{x}](https://tex.z-dn.net/?f=a%5Csqrt%5Bn%5D%7Bx%7D%2Bb%5Csqrt%5Bn%5D%7Bx%7D%3Dab%5Csqrt%5Bn%5D%7Bx%7D)
The statement is false, the correct form of the statement (according to the property of roots) is:
![a\sqrt[n]{x}+b\sqrt[n]{x}=(a+b)\sqrt[n]{x}](https://tex.z-dn.net/?f=a%5Csqrt%5Bn%5D%7Bx%7D%2Bb%5Csqrt%5Bn%5D%7Bx%7D%3D%28a%2Bb%29%5Csqrt%5Bn%5D%7Bx%7D)
<h2>
Fourth option,</h2>
![\frac{\sqrt[m]{x} }{\sqrt[m]{y}}=m\sqrt{xy}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5Bm%5D%7Bx%7D%20%7D%7B%5Csqrt%5Bm%5D%7By%7D%7D%3Dm%5Csqrt%7Bxy%7D)
The statement is false, the correct form of the statement (according to the property of roots) is:
![\frac{\sqrt[m]{x} }{\sqrt[m]{y}}=\sqrt[m]{\frac{x}{y} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5Bm%5D%7Bx%7D%20%7D%7B%5Csqrt%5Bm%5D%7By%7D%7D%3D%5Csqrt%5Bm%5D%7B%5Cfrac%7Bx%7D%7By%7D%20%7D)
Hence, the answer is, the statement that is true is the second statement:
![(\sqrt[m]{x^{a} } )^{b}=\sqrt[m]{x^{ab} }](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D%3D%5Csqrt%5Bm%5D%7Bx%5E%7Bab%7D%20%7D)
Have a nice day!
Answer: 5 * 23 = 115 so 40<
Step-by-step explanation:
<u>Complete Question:</u>
Janeel has a 10 inch by 12 inch photograph. She wants to scan the photograph, then reduce the results by the same amount in each dimension to post on her Web site. Janeel wants the area of the image to be one eight of the original photograph. Write an equation to represent the area of the reduced image. Find the dimensions of the reduced image.
<u>Correct Answer:</u>
A) 
B) Dimensions are : Length = 10-x = 3 inch , Breadth = 12-x = 5 inch
<u>Step-by-step explanation:</u>
a. Write an equation to represent the area of the reduced image.
Let the reduced dimensions is by x , So the new dimensions are

According to question , Area of new image is :
⇒ 
⇒ 
⇒ 
So the equation will be :
⇒ 
b. Find the dimensions of the reduced image
Let's solve : 
⇒ 
⇒ 
⇒ 
By Quadratic formula :
⇒ 
⇒ 
⇒ 
⇒
x = 15 is rejected ! as 15 > 10 ! Side can't be negative
⇒ 
Therefore, Dimensions are : Length = 10-x = 3 inch , Breadth = 12-x = 5 inch