First, write the equation:
Cu + O2 -> CuO
Now, balance:
2 Cu + O2 -> 2 CuO
2000/18 =111.111111
111.1 moles
Purpose
prediction
procedure
data
calculation
conclusion - results etc.
The reaction is:
2 NO₂ (g) + F₂ (g) ⇆ 2 NO₂F (g)
The stoichiometric coefficients of the substances balance out each other to obey the Law of Definite Proportions. Now, you have to note that determining the reaction rate expression is specific to a certain type of reaction. So, this are determined empirically through doing experiments. But in chemical reaction engineering, to make things simple, you assume that the reaction is elementary. This means that the order of a reaction with respect to a certain substance follows their individual stoichiometric coefficients. What I'm saying is, the stoichiometric coefficients are the basis of our reaction rate orders. For this reaction, the rate order is 2 for NO₂, 1 for F₂ and 2 for NO₂F. When the forward and reverse reactions are in equilibrium, then it applies that:
Reaction rate of disappearance of reactants = Reaction rate of formation of products.
Therefore, we can have two reaction rate constants for this. But since the conditions manipulated are the reactant side, let's find the expression for reaction rate of disappearance of reactants.
-r = k[NO₂]²[F₂]
The negative sign before r signifies the rate of disappearance. If it were in terms of the product, that would have been positive. The term k denotes for the reaction rate constant. That is also empirical. As you can notice the stoichiometric coefficients are exponents of the concentrations of the reactants. Let's say initially, there are 1 M of NO₂ and 1 M of F₂. Then,
-r = k(1)²(1)
-r = k
Now, if we change 1 M of NO₂ by increasing it to its half, it would now be 1.5 M NO₂. Then, if we quadruple the concentration of F₂, that would be 4 M F₂. Substituting the values:
-r = k(1.5)²(4)
-r = 9k
So, as you can see the reaction rate increase by a factor of 9.
Answer:
All the statements are correct but "all chemical reactions can be classified as one of the five general types".
Explanation:
Hello,
In this case, I assume you are looking for the wrong statement as long as the following ones are correct and matches with the foundations of chemical reactions:
- The only way to determine the products of a reaction is to carry out the reaction. This is clear, because after the chemical reaction is done, one identifies the products.
- Complete combustion has occurred when all the carbon in the product is in the form of carbon dioxide. This is clear due to a 100% conversion.
- A single reactant is the identifying characteristic of a decomposition reaction. All decomposition reactions have only one reactant which breaks into less complex species.
So the wrong statement is:
- All chemical reactions can be classified as one of five general types. This is wrong because there are four widely known chemical reactions: synthesis, decomposition, simple displacement and double displacement.
Best regards.