Note that we are omitting the water.
So, sodium carbonate will basically dissociate into positive sodium ions and negative carbonate ions based on the following equation:
<span>Na2CO3 → 2 Na(+) + CO3(2-)
</span>
If we took water into consideration:
Sodium carbonate will dissociate in water forming carbonic acid and sodium hydroxide. Since sodium hydroxide is a strong base, therefore, it will then neutralize the gastric acid, thus, acting as an antacid.
Answer:
P1 = 2.5ATM
Explanation:
V1 = 28L
T1 = 45°C = (45 + 273.15)K = 318.15K
V2 = 34L
T2 = 35°C = (35 + 273.15)K = 308.15K
P1 = ?
P2 = 2ATM
applying combined gas equation,
P1V1 / T1 = P2V2 / T2
P1*V1*T2 = P2*V2*T1
Solving for P1
P1 = P2*V2*T1 / V1*T2
P1 = (2.0 * 34 * 318.15) / (28 * 308.15)
P1 = 21634.2 / 8628.2
P1 = 2.5ATM
The initial pressure was 2.5ATM
A proton's mass is 1.6726231*10-27 kg, and the size of its radius is around 0.84×10−15 to 0.87×10−15 m.
Answer:
option C is correct (250 g)
Explanation:
Given data:
Half life of carbon-14 = 5700 years
Total amount of sample = 1000 g
Sample left after 11,400 years = ?
Solution:
First of all we will calculate the number of half lives passes during 11,400 years.
Number of half lives = time elapsed/ half life
Number of half lives = 11,400 years/5700 years
Number of half lives = 2
Now we will calculate the amount left.
At time zero = 1000 g
At first half life = 1000 g/2 = 500 g
At second half life = 500 g/2 = 250 g
Thus, option C is correct.
Explanation:
Balanced chemical reaction equation will be as follows.

In human body, the neutral iron changes into
(aq) cation. There will be an oxidation-half reaction and a reduction-half reaction. Equations for this reaction are as follows.
Oxidation: 2Fe^{2+}(aq) \rightleftharpoons 2Fe^{3+}(aq) + 2e^{-}[/tex] .... (1)
Reduction:
...... (2)
On adding both equation (1) and (2), the overall reaction equation will be as follows.

Therefore, neutral iron is a part of Heme - b group of Hemoglobin and in an aqueous solution it dissolutes as a part of Heme group. Hence, then it becomes an
cation.