Are you sure you want ONLY the coefficient of b? If you expand this, you will have b in 3 of 4 terms.
According to Pascal's Triangle, the coefficients of (a+b)^4 are as follows:
1
1 2 1
1 3 3 1
1 4 6 4 1
So (a+b)^4 would be 1a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4
Here, you want (3 + b)^4. Here's what that looks like:
3^4 + 4[3^3*b] + 6[3^2*b^2] + 4[3*b^3] + 1[b^4]
Which coeff did you want?
The minimum value for the function is -6
2,8 is the Awnser if you can see it on the graph it goes 2 up 8 right
12X is the period of what is the period of f : R→R, f(x) = tan(x 3)?