The change in temperature had the greatest effect at changing the volume of the balloon.
<h3>What are the gas laws?</h3>
The gas laws are used to describe the parameters that has to do with gases.
Given that;
P1 = 98.5 kPa
T1 = 18oC or 291 K
V1 = 74.0 dm3
P2 = 7.0 kPa
V2 = ?
T2 = 18oC or 291 K
P1V1/T1 = P2V2/T2
P1V1T2 =P2V2T1
V2= P1V1T2/P2T1
V2 = 98.5 kPa * 74.0 dm3 * 291 K/ 7.0 kPa * 291 K
V2 = 1041.3 dm3
When;
V1 = 1041.3 dm3
T1 = 291 K
V2 = ?
T2 = 80oC or 353 K
V1/T1 = V2/T2
V1T2 = V2T1
V2 = V1T2/T1
V2 = 1041.3 dm3 * 353 K/291 K
V2 = 1263 dm3
The change in temperature had the greatest effect at changing the volume of the balloon.
Given that
V1 = 100 cm^3
T1 = 273 K
P1 = 1.01 * 10^5 Pa
V2 = ?
P2 = 3.00 x 10^-4 Pa
T2 = -180oC or 255 K
V2= P1V1T2/P2T1
V2 = 1.01 * 10^5 Pa * 100 cm^3 * 255 K / 3.00 x 10^-4 Pa * 273 K
V2 = 3.14 * 10^10 cm^3
Learn more about gas laws:brainly.com/question/12669509
#SPJ1
Potassium or any other metals.
Answer:
an increase in 1-butene was observed when t-butoxide was used
Explanation:
When a base reacts with an alkyl halide, an elimination product is formed. This reaction is an E2 reaction.
Here we are to compare the reaction of two different bases with one substrate; 2-bromobutane. Both reactions occur by the E2 mechanism but follow different transition states due to the size of the base.
The Saytzeff product, 2-butene, is obtained when the methoxide is used while the non Saytzeff product, 1-butene, is obtained when t-butoxide is used.
The Saytzeff rule is reliable in predicting the major products of simple elimination reactions of alkyl halides given the fact that a small/strong bases is used for the elimination reaction. Therefore hydroxide, methoxide and ethoxide bases give similar results for the same alkyl halide substrate. Bulky bases such as tert-butoxide tend to yield a higher percentage of the non Saytzeff product and this is usually attributed to steric hindrance.
<u>Answer:</u>
Law used: Combined Gas Law
<u>Explanation:</u>
We are given the following problem:
Carbon dioxide is in a steel tank at 20°C, 10 liters and 1 atm. What is the pressure on the gas when the tank is heated to 100°C?
To solve this, the most appropriate law that can be used it Combined Gas Law, which is the result of combining the Boyle's law, Charles' law, and Gay-Lussac's law together.
The density of ice is less than the density of water (liquid). We generally observe that the density of a solid substance is more than its liquid form as volume of a solid is generally less than the liquid, However in case of water this is not true.
The volume of ice is less than that of liquid water due to an open cage like structure in ice which gives its a wide structure. This cage like structure is due to presence of hydrogen bond (more extensive) in ice.
The maximum density of water is observed at 4 degree celsius