Explanation:
1st if you think you going to a place where you can be in situation where no one can help so you shouldn't go
2nd even somehow you reached these place you should try to make a shelter.
3rd use your hand warmer.
4th don't loose hope and have a positive thinking about yourself
5th if your hungry so be like bear Grylls eat anything that safe for your health.
6th at last if you find a helicopter so try to burn wood and make smoke as much as possible.
hope this helps you
have a great day
V(C₄H₆O₃) = 5.00 mL.
d(C₄H₆O₃) = 1.08 g/mL.
m(C₄H₆O₃) = V(C₄H₆O₃) · d(C₄H₆O₃).
m(C₄H₆O₃) = 5.00 mL · 1.08 g/mL.
m(C₄H₆O₃) = 5.4 g.
n(C₄H₆O₃) = m(C₄H₆O₃) ÷ M(C₄H₆O₃).
n(C₄H₆O₃) = 5.4 g ÷ 102 g/mol.
n(C₄H₆O₃) = 0.0529 mol.
n(C₇H₆O₃) = 2.08 g ÷ 138.1 g/mol.
n(C₇H₆O₃) = 0.015 mol; limiting reactant.
From chemical reaction: n(C₄H₆O₃) : n(C₉H₈O₄) = 1 : 1.
n(C₉H₈O₄) = 0.015 mol.
m(C₉H₈O₄) = 0.015 mol · 180.16 g/mol.
m(C₉H₈O₄) = 2.71 g; theoretical yield.
percent yield od aspirine = 2.57 g ÷ 2.71 g · 100% = 94.83%.
I uploaded the answer to a file hosting. Here's link:
tinyurl.com/wpazsebu
Answer:
is 1 mole of copper atoms Cu
Answer:
b. Add a few drops of one of the layers to a test tube containing 1 mL of water. Shake the test tube to determine the solubility of the layer in water
Explanation:
Option a is not true, it depends on the compound being extracted.
Option c is not true, although most of the solvents used in extractions have lower boiling point than water there are exceptions, for example toluene.
Option d is not true. Again most of the solvents used in extractions are less dense than water, there are many exceptions, for example chloroform, so for equal volumes the chloroform layer will weigh more.
Option b. is the correct one.
One will test the miscibility of the layer in water. If it inmiscible then one would know is the organic layer. If it is the aqueous layer then it will completely be miscible.