Answer:

Explanation:
From the question we are told that:
Density of acetic acid 
Density of Water 
Generally the equation for Solution Density is mathematically given by




Answer:
A is the molecular formula for xylose because shows the actual number of atoms in the compound: Formula B is the empirical formula for xylose because it shows the smallest whole-number ratio for the different atoms in the compound: Formula A is the molecular formula for xylose because shows the arrangement of atoms in the compound: Formula B is the structurab formula for xylose because it shows the smallest whole-number ratio for the different atoms in the compound: Formula A is the empirical formula for xylose because it shows the actual number of atoms in the compound: Formula B is the molecular formula for xylose because it shows the smallest whole-number ratio for the different atoms in the compound: Formula A is the structural formula for xylose because it shows the arrangement of atoms in the compound: Formula B is the empirical formula for xylose because it shows the smallest whole-number ratio for the different atoms in the compound.
Answer:
a). Coordination no. of
= 6
b). Coordination no. of
= 6
Explanation:
Coordination number is defined as number of donar atoms bonded to the central atom of the complex ion.
a). Coordination no. of
= 6
en or ethylenediamine is a bidentate ligand.
In bidentate ligand, two atoms directly bonded to the central atom.
NH3 is a unidentate ligand.
So, coordination no.= No. of bidentate ligand x 2 + No. of unidentate ligand
= 
b). Coordination no. of
= 6
Ethylenediamine (en) is a bidentate ligand.
oxalate ion (ox) is also a bidentate ligand.
Cl is a unidentate ligand
So, coordination no.= No. of bidentate ligand x 2 + No. of unidentate ligand
= 
Classification of the Elements. The next thing in our review is to classify the elements into three groups. These three groups are: metals, nonmetals, and inert gases. Let's look at where these groups are located on the periodic table and correlate them with the ability to lose and gain electrons.