1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kitty [74]
2 years ago
10

Demonstrate an understanding of Stoichiometry by describing and calculating the components required for a stoichiometric evaluat

ion and performing stoichiometric evaluations for determining the limiting reactant and percent yield.
Chemistry
1 answer:
NeTakaya2 years ago
8 0

Explanation:

Iam sorry I don't know but why Iam messaging iss because when more people message it usually appears to more people so someone else will be able to help you:)

You might be interested in
If a tractor trailer and a car are both traveling 50km/h when they hit which will have the greatest change in speed and directio
den301095 [7]
The tractor trailer will push the car when they hit so therefore the car will have to greatest change

4 0
2 years ago
How many significant figures are in 3.02 x 108 ?<br> a<br> 2<br> b 4<br> C 5<br> d 3
bija089 [108]

Answer:

C

Explanation:

the answer has 5 Numbers

7 0
2 years ago
The vapor pressure of water is 1.00 atm at 373 K, and the enthalpy of vaporization is 40.68 kJ mol!. Estimate the vapor pressure
Yuki888 [10]

Answer:

The vapor pressure at temperature 363 K is 0.6970 atm

The vapor pressure at 383 K is 1.410 atm

Explanation:

To calculate \Delta H_{vap} of the reaction, we use clausius claypron equation, which is:

\ln(\frac{P_2}{P_1})=\frac{\Delta H_{vap}}{R}[\frac{1}{T_1}-\frac{1}{T_2}]

where,

P_1 = vapor pressure at temperature T_1

P_2 = vapor pressure at temperature T_2

\Delta H_{vap} = Enthalpy of vaporization  

R = Gas constant = 8.314 J/mol K

1) \Delta H_{vap}=40.68 kJ/mol=40680 J/mol

T_1 = initial temperature =363 K

T_2 = final temperature =373 K

P_2=1 atm, P_1=?

Putting values in above equation, we get:

\ln(\frac{1 atm}{P_1})=\frac{40680 J/mol}{8.314J/mol.K}[\frac{1}{363}-\frac{1}{373}]

P_1=0.69671 atm \approx 0.6970 atm

The vapor pressure at temperature 363 K is 0.6970 atm

2) \Delta H_{vap}=40.68 kJ/mol=40680 J/mol

T_1 = initial temperature =373 K

T_2 = final temperature =383 K

P_1=1 atm, P_2?

Putting values in above equation, we get:

\ln(\frac{P_2}{1 atm})=\frac{40680 J/mol}{8.314J/mol.K}[\frac{1}{373}-\frac{1}{383}]

P_2=1.4084 atm \approx 1.410 atm

The vapor pressure at 383 K is 1.410 atm

8 0
3 years ago
Pure chlorobenzene (C6H5Cl) has a normal boiling point of 131.00 °C. A solution of 32.5 g of 2,8-dibromodibenzofuran (C12H6Br2O)
vichka [17]

Answer:

Kb →  1.56 °C / m

Explanation:

This is all about boiling point elevation, the colligative property that shows that boiling point for a solution is higher than boiling point of pure solvent.

This is the formula: ΔT = Kb . m . i

where i is the Van't Hoff factor (ions dissolved in solution). As these are organic compounds, we assume they are non electrolytic,

m is molality (mol of solute / 1kg of solvent)

Kb is our unknown. The value for ebulloscopic constant, it is specific for each solvent.

ΔT = T° boiling from solution - T° boiling from solute

First of all, let's determine the moles of solute.

Mass / Molar mass → 32.5 g/ 113.45 g/mol = 0.286 mol

Molality is mol of solute/ 1 kg of solvent

We must convert the mass from g to kg

195g . 1kg /1000 = 0.195 kg

Molality = 0.286 mol / 0.195 kg = 1.47 m

Let's replace the values in the formula

133.30 °C - 131°C = Kb . 1.47m .1

2.30°C / 1.47 m =  Kb →  1.56 °C / m

3 0
3 years ago
The decomposition of N2O to N2 and O2 is a first-order reaction. At 730°C, the rate constant of the reaction is 1.94 × 10-4 min-
grin007 [14]

Answer:

Total pressure 5.875 atm

Explanation:

The equation for above decomposition is

2N_2O \rightarrow 2N_2 + O_2

rate constant k =  1.94\times 10^{-4} min^{-1}

Half life t_{1/2} = \frac{0.693}{k} = 3572 min

Initial pressure N_2 O = 4.70 atm

Pressure after 3572 min = P

According to first order kinematics

k = \frac{1}{t} ln\frac{4.70}{P}

1.94\times 10^{-4} = \frac{1}{3572} \frac{4.70}{P}

solving for P we get

P = 2.35 atm

2N_2O \rightarrow 2N_2 + O_2

initial           4.70                         0             0

change        -2x                          +2x           +x

final             4.70 -2x                     2x           x

pressure ofO_2 after first half life  = 2.35 = 4.70 - 2x

                                                          x = 1.175

pressure of N_2 after first half life  =  2x = 2(1.175) = 2.35 ATM

Total pressure  = 2.35 + 2.35 + 1.175

                          = 5.875 atm

5 0
3 years ago
Read 2 more answers
Other questions:
  • Ans with solution...
    10·1 answer
  • Question 13 (1 point)
    10·1 answer
  • Why do atomic models change over time
    14·1 answer
  • Show the calculation of the mass (grams) of a 14.5 liter gas sample with a molecular weight of 82 when collected at 29°C and 740
    13·1 answer
  • If mercury (Hg) and oxygen (O2) were reacted to form mercury oxide how many molecules of each reactant and product would be need
    8·1 answer
  • Provide the electronic structure diagram of propene showing all molecular orbitals​
    5·1 answer
  • How many moles are in 5.6 grams of Na?
    7·2 answers
  • 8,000 meters into miles (show work)
    8·2 answers
  • Which statement is true?
    6·1 answer
  • Which of the three subatomic particles have a neutral charge? *
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!