The answer for the following problem is mentioned below.
- <u><em>Therefore 298.44 grams of mercuric oxide is needed to produce 0.692 moles of oxygen molecule </em></u>
Explanation:
Given:
no of moles of the oxygen gas = 0.692
Also given:
2 HgO → 2 Hg + 
where,
HgO represents mercuric oxide
Hg represents mercury
represents oxygen
To calculate:
Molar mass of HgO:
Molar mass of HgO = 216 grams
molar mass of mercury (Hg) = 200 grams
molar mass of oxygen (O) =16 grams
HgO = 200 +16 = 216 grams
We know;
2×216 grams of HgO → 1 mole of oxygen molecule
? → 0.692 moles of oxygen molecule
= 
= 298.944 grams of HgO
<u><em>Therefore 298.44 grams of mercuric oxide is needed to produce 0.692 moles of oxygen molecule </em></u>
<u />
Answer:
A tritium is produced.
Explanation:
Combining two additional neutrons to the nucleus of the hydrogen atom makes it a tritium, Hydrogen-3.
neutron is designated ¹₀n; this shows a mass number of 1 and no atomic number
Hydrogen-1 is designated as ₁¹H; a mass number of 1 and atomic number of 1. This particle is actually more like a proton.
Combining both:
₁¹H + 2¹₀n → ³₁H
This is a nuclear reaction and in balancing such reaction equation, mass numbers and atomic numbers must be conserved.
Option (i) would have the highest 2nd Ionization Energy.
Option (i) is Sodium.
Can be Written as 2, 8 , 1
For its 1st Ionization energy... It'd be extremely easy to remove that Electron cos its on the outermost shell.
Now After Removing that Electron...
Sodium's Electronic Configuration Reduces to that of Neon Which is 2, 8.
Neon has a very stable Octet.
It would take an ENORMOUS amount of energy to break its Octet stability... that is... Remove 1 electron from its Octet.
So
Option (i) [Sodium] has the highest 2nd Ionization Energy
When a radioactive isotope releases an alpha particle, the atomic number of the atom is decreased by four.
So, the correct answer is B.
Hope this helps,
Davinia.