Answer:
11.3 g.
Explanation:
Hello there!
In this case, since the combustion of butane is:

Thus, since there is a 1:5 mole ratio between butane and water, we obtain the following mass of water:

Therefore, the resulting mass of water is:

Best regards!
since the unit for the heat of fusion is kJ/mol, you're going to have to convert the grams into moles in order to cancel out the unit. After that, you can solve like normal.
PV / T = P'V' / T'
V = V'
P / T = P' / T'
P = 630 mmHg
T = 100 K
P' = 1760 mmHg
T' = ?
630 / 100 = 1760 / T'
T' = 1760 / 6,3
T' = 279,36 K
T' ≈ 280 K
Answer:
1) HCOOCH3
2) CH3CH2COOCH3
3) CH3CH2CH2CH(CH3)COOCH3
Explanation:
In the reaction between an alcohol and a carboxylic acid, an ester and water are formed. It is analogous to the inorganic neutralization reaction but this reaction is called esterification in organic chemistry. Esters contain the general formula RCOOR where the RCOO moiety was obtained from the acid and the other R moiety was obtained from the alcohol. The -COOR shows the ester linkage in the molecule. The condensed structural formulas shown in the answer reflects these facts.
Are produced 72 grams of water in this reaction.
<h3>Mole calculation</h3>
To find the value of moles of a product from the number of moles of a reactant, it is necessary to observe the stoichiometric ratio between them:

Analyzing the reaction, it is possible to see that the stoichiometric ratio is 1:2, so we can perform the following expression:



So, if there are 2 mols of Ca(OH)2:
Ca(OH)2 | H2O


Finally, just find the number of grams of water using your molar mass:


So, 72 grams are produced of water in this reaction.
Learn more about mole calculation in: brainly.com/question/2845237