Answer:
Explanation:
Given
First bicycle travels 6.10 km due to east in 0.21 h
Suppose its position vector is 

After that it travels 11.30 km at
east of north in 0.560 h
suppose its position vector is 

after that he finally travel 6.10 km due to east in 0.21 h
suppose its position vector is 

so position of final position is given by



t=0.21+0.56+0.21=0.98 h


For direction

w.r.t to x axis
The magnitude of the magnetic force per unit length on the top wire is
2×10⁻⁵ N/m
<h3>How can we calculate the magnitude of the magnetic force per unit length on the top wire ?</h3>
To calculate the magnitude of the magnetic force per unit length on the top wire, we are using the formula
F= 
Here we are given,
= magnetic permeability
= 4
×10⁻⁷ H m⁻¹
If= 12 A
d= distance from each wire to point.
=0.12m
Now we put the known values in the above equation, we get
F= 
Or, F = 
Or, F= 2×10⁻⁵ N/m.
From the above calculation, we can conclude that the magnitude of the magnetic force per unit length on the top wire is 2×10⁻⁵ N/m.
Learn more about magnetic force:
brainly.com/question/2279150
#SPJ4
Answer:
a)1815Joules b) 185Joules
Explanation:
Hooke's law states that the extension of a material is directly proportional to the applied force provided that the elastic limit is not exceeded. Mathematically;
F = ke where;
F is the applied force
k is the elastic constant
e is the extension of the material
From the formula, k = F/e
F1/e1 = F2/e2
If a force of 60N causes an extension of 0.5m of the string from its equilibrium position, the elastic constant of the spring will be ;
k = 60/0.5
k = 120N/m
a) To get the work done in stretching the spring 5.5m from its position,
Work done by the spring = 1/2ke²
Given k = 120N/m, e = 5.5m
Work done = 1/2×120×5.5²
Work done = 60× 5.5²
Work done = 1815Joules
b) work done in compressing the spring 1.5m from its equilibrium position will be gotten using the same formula;
Work done = 1/2ke²
Work done =1/2× 120×1.5²
Works done = 60×1.5²
Work done = 135Joules
Answer:
The average velocity is
and
respectively.
Explanation:
Let's start writing the vertical position equation :

Where distance is measured in meters and time in seconds.
The average velocity is equal to the position variation divided by the time variation.
= Δx / Δt = 
For the first time interval :
t1 = 5 s → t2 = 8 s
The time variation is :

For the position variation we use the vertical position equation :

Δx = x2 - x1 = 1049 m - 251 m = 798 m
The average velocity for this interval is

For the second time interval :
t1 = 4 s → t2 = 9 s


Δx = x2 - x1 = 1495 m - 125 m = 1370 m
And the time variation is t2 - t1 = 9 s - 4 s = 5 s
The average velocity for this interval is :

Finally for the third time interval :
t1 = 1 s → t2 = 7 s
The time variation is t2 - t1 = 7 s - 1 s = 6 s
Then


The position variation is x2 - x1 = 701 m - (-1 m) = 702 m
The average velocity is

Answer:

Explanation:
#Using the conservation of momentum , momentum before equals momentum after(
.
-Initial speed is 5.2m/s while the cart is at rest. After, the velocity will be of a combined(bag+cart) mass.
Hence:

Hence, the final velocity of the cart and bag is 1.77m/s