1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
trasher [3.6K]
1 year ago
8

If =12a andthe distance from each wire to point p is 0.12m, then what is the magnitude of the magnetic force per unit length on

the top wire?
Physics
1 answer:
vaieri [72.5K]1 year ago
7 0

The magnitude of the magnetic force per unit length on the top wire is

2×10⁻⁵  N/m

<h3>How can we calculate the magnitude of the magnetic force per unit length on the top wire ?</h3>

To calculate the magnitude of the magnetic force per unit length on the top wire, we are using the formula

F= \frac{\mu_0 I_f}{2\pi d}

Here we are given,

\mu_0= magnetic permeability

= 4\pi×10⁻⁷ H m⁻¹

If= 12 A

d= distance from each wire to point.

=0.12m

Now we put the known values in the above equation, we get

F= \frac{\mu_0 I_f}{2\pi d}

Or, F = \frac{4\pi \times 10^{-7}\times  12}{2\pi \times 0.12}

Or, F= 2×10⁻⁵ N/m.

From the above calculation, we can conclude that the magnitude of the magnetic force per unit length on the top wire is 2×10⁻⁵ N/m.

Learn more about magnetic force:

brainly.com/question/2279150

#SPJ4

You might be interested in
The ink drops have a mass m = 1.00×10^−11 kg each and leave the nozzle and travel horizontally toward the paper at velocity v =
luda_lava [24]

Answer:

9.98 × 10⁻⁹ C

Explanation:

mass, m = 1.00 × 10⁻¹¹ kg

Velocity, v = 23.0 m/s

Length of plates D₀ = 1.80 cm = 0.018 m

Magnitude of electric field, E = 8.20 × 10⁴ N/C

drop is to be deflected a distance d = 0.290 mm = 0.290 × 10⁻³ m

density of the ink drop = 1000 kg/m^3

Now,

Time = \frac{\textup{Distance}}{\textup{Velocity}}

or

Time = \frac{\textup{0.016}}{\textup{23}}

or

Time = 6.9 × 10⁻⁴ s

Now, force due to the electric field, F = q × E

where, q is the charge

Also, Force = Mass × acceleration

q × E = 1.00 × 10⁻¹¹ × a

or

a = \frac{q\times8.20\times10^4}{1\times10^{-11}}

Now from the Newton's equation of motion

d=ut+\frac{1}{2}at^2

where,  

d is the distance

u is the initial speed  

a is the acceleration

t is the time

or

0.290\times10^{-3}=0\times(6.9\times10^{-4})+\frac{1}{2}\times(\frac{q\times8.20\times10^4}{1\times10^{-11}})\times(6.9\times10^{-4})^2

or

q = 9.98 × 10⁻⁹ C

4 0
3 years ago
Has anyone heard from joshuasalazar697?? PLEASE LET ME KNOW ASAP I NEED TO TALK TO HIM ITS REALLY IMPORTANT!!
Ipatiy [6.2K]

Answer:

no ma'am ill help you look

Explanation:

8 0
2 years ago
An ion accelerated through a potential difference of 115 V experiences an increase in kinetic energy of 7.37 x 1017 J. Calculate
riadik2000 [5.3K]

Answer: 6.408(10)^{-19} C

Explanation:

This problem can be solved by the following equation:

\Delta K=q V

Where:

\Delta K=7.37(10)^{-17} J is the change in kinetic energy

V=115 V is the electric potential difference

q is the electric charge

Finding q:

q=\frac{\Delta K}{V}

q=\frac{7.37(10)^{-17} J}{115 V}

Finally:

q=6.408(10)^{-19} C

4 0
3 years ago
Ten identical steel wires have equal lengths L and equal "spring constants" k. The wires are connected end to end so that the re
lapo4ka [179]

Answer:

K_{system} = \frac{k}{10}

Explanation:

When the springs are connected end to end, it means they are connected in series. When the springs are connected in series, the stress applied to the system gets applied to each of the springs without any change in magnitude while the strain of the system is the sum total of strains of each spring. The spring constant of the resultant system is given as,

\frac{1}{K_{system}} = (\frac{1}{K_{1}})+(\frac{1}{K_{2}})+(\frac{1}{K_{3}})+ (\frac{1}{K_{4}})+.....+(\frac{1}{K_{n}})

Here, n = 10

Spring constant of each spring = k

Thus,

\frac{1}{K_{system}} = (\frac{1}{K_{1}})+(\frac{1}{K_{2}})+(\frac{1}{K_{3}})+ (\frac{1}{K_{4}})+.....+(\frac{1}{K_{10}})

\frac{1}{K_{system}} = (\frac{1}{k})+(\frac{1}{k})+(\frac{1}{k})+(\frac{1}{k})+(\frac{1}{k})+(\frac{1}{k})+(\frac{1}{k})+(\frac{1}{k})+(\frac{1}{k})+(\frac{1}{k})

\frac{1}{K_{system}} = \frac{10}{k}

K_{system} = \frac{k}{10}

7 0
3 years ago
Read 2 more answers
Mass×acceleration of a triangle =force​
Law Incorporation [45]

Answer:

The force acting on a body is always equal to the product of the mass of the body and its acceleration.

Explanation:

The force of a body is defined as the product of mass and acceleration of the body.

According to Newton's second law, wherever there is a change in momentum of the body for an interval of time, there is a force acting on it.

                         F = (mv - mu) / t

                             = m (v -u) /t

                              = m a

Where,

                                 (v - u)/t - is the change in velocity of the body in the interval of time. It is equal to the acceleration of the body.

Hence, the equation for the force for any body becomes, F = m x a

5 0
3 years ago
Other questions:
  • A 98-kg fullback is running along at 8.6 m / s when a 76-kg defensive back running in the same direction at 9.8 m / s jumps on h
    5·1 answer
  • A lead ball is dropped into a lake from a diving board 6.10 mm above the water. After entering the water, it sinks to the bottom
    10·2 answers
  • georgia is jogging with a velocity of 4 m/s when she accelerates at 2 m/s squared for 3 seconds. How fast is Georgia running now
    6·1 answer
  • Listed following are several astronomical objects. Rank these objects based on their diameter, from largest to smallest. (Note t
    10·1 answer
  • Identify the statement below that is true about a type of stress.
    8·2 answers
  • WRONG ANSWERS WILL BE REPORTED
    10·1 answer
  • A ranger in a national park is driving at 11.8mi / h when a deer jumps into the road 242 ft ahead of the vehicle. After a reacti
    5·1 answer
  • If you are given the force and distance, you can determine power if you know
    8·1 answer
  • Please helppppppppppp​
    5·1 answer
  • Different between : <br>Metalloids and alloys ​
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!