Answer:
C. 
General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Trig Derivatives
Logarithmic Derivatives
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Differentiate</u>
- Derivative Rule [Product Rule]:
![\displaystyle f'(x) = \frac{d}{dx}[ln(x)]cos(x) + ln(x)\frac{d}{dx}[cos(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bln%28x%29%5Dcos%28x%29%20%2B%20ln%28x%29%5Cfrac%7Bd%7D%7Bdx%7D%5Bcos%28x%29%5D)
- Logarithmic Derivative:
![\displaystyle f'(x) = \frac{1}{x}cos(x) + ln(x)\frac{d}{dx}[cos(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%20%5Cfrac%7B1%7D%7Bx%7Dcos%28x%29%20%2B%20ln%28x%29%5Cfrac%7Bd%7D%7Bdx%7D%5Bcos%28x%29%5D)
- Trig Derivative:
![\displaystyle f'(x) = \frac{1}{x}cos(x) + ln(x)[-sin(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%20%5Cfrac%7B1%7D%7Bx%7Dcos%28x%29%20%2B%20ln%28x%29%5B-sin%28x%29%5D)
- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Book: College Calculus 10e
Hi,
I would say that the answer is 28, but it still doesn't add up because when you multiply 12 by 28 you get $3.36 which isn't enough to meet his total, so I tried multiplying 12 by 29 and I got $3.48, which is six cents over his total. So I'm sorry if it is wrong I tried to help to my best ability.
I hope it helps, have a great day/night!!!
You can use this one app it’s called Cymath it’s really helpful with these types of problems,
Answer:
Angle A = Angle Y
Angle B = Angle Z
Angle C = Angle X
AB = YZ
AC = YX
BC = ZX
Triangle ABC = Triangle YZX
Step-by-step explanation:
Find this by looking at the corresponding parts on the other triangle. They have the same marking on them. Make sure that when answering for segments or triangles that the order is the same on both sides.
Answer:
91
Step-by-step explanation:
273 divded by 3