1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotegsom [21]
2 years ago
12

a survey was conducted in a local shopping mall. there were 75 woman and 150 men surveyed if 3/5 of the woman said they would li

ke to receive flowers as a Valentine's Day gift but only a third of men said they would like to get flowers how many fewer woman responded they like to get flowers than men?​
Mathematics
1 answer:
MA_775_DIABLO [31]2 years ago
6 0
Since 3/5 of 75 is 45, and 1/3 of 150 is 50, there are 5 fewer women who like to receive flowers than men. hope this helped <3
You might be interested in
On a survey, 6 students reported how many minutes it takes them to travel to school. Here are their responses.
g100num [7]
The mean would be 8.33
3 0
2 years ago
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
What is 8.475 rounded to the nearest tenth
pentagon [3]


7 is closer to 10 and is more than half. 5 and up, go up one. 4 and below, stay the same.

8.475= 8.5


    

6 0
3 years ago
What value has a z-score of -0.67, if the mean is 18 and the standard deviation is 1.68?
uranmaximum [27]
The data point is 1.6 standard deviations above the mean.
Step-by-step explanation:
Z-score
It is the number of standard deviations from the mean that a data point is. It's a measure of how many standard deviations below or above the population mean a raw score is.
A Z-score is also known as a standard score and it can be placed on a normal distribution curve.
As in this case the Z-score is +1.6, so it means the data point is 1.6 standard deviations above the mean. Hope this helps I am kinda knew to this so I hope I helped you
7 0
3 years ago
Which of the following is the quotient of the rational expressions shown here? x/x-1 / 1/x 1.
WINSTONCH [101]

The quotient of the rational expressions is \rm \dfrac{x^2-x}{x-1}.

<h3>Given that</h3>

Rational Expression; \rm \dfrac{x}{x-1} ÷\rm \dfrac{1}{x+1}

<h3>We have to determine</h3>

Which of the following is the quotient of the rational expressions shown here?

<h3>According to the question</h3>

Rational Expression; \rm \dfrac{x}{x-1} ÷\rm \dfrac{1}{x+1}

Then,

The quotient of the rational expressions is,

\rm \dfrac{x}{x-1} ÷\rm \dfrac{1}{x+1}

\rm =\dfrac{x}{x-1} \times \dfrac{x+1}{1}\\&#10;\\ =\dfrac{x(x-1)}{x\times 1}\\&#10;\\&#10;=\dfrac{x^2-x}{x-1}

Hence, The quotient of the rational expressions is \rm \dfrac{x^2-x}{x-1}.

To know more about Division click the link given below.

brainly.com/question/26163188

7 0
3 years ago
Other questions:
  • Find the product of these complex numbers<br> (8+5i)((-7+9i)
    6·2 answers
  • Carrie has 140 coins.She has 10 times as many coins as she had last month.How many coins did Carrie have last month
    9·1 answer
  • Look at this set of 8 numbers:33769234 how would the range change if the number 6 replaced the number 7 in the set
    6·1 answer
  • What is 3 over 5 + 1 over 9
    8·1 answer
  • 3/8 times what equals 1
    14·1 answer
  • HELPPPPPPP!!!!!!!!!!!!!
    11·2 answers
  • ⚠️15 points⚠️
    11·2 answers
  • Solve x squared = 10
    13·1 answer
  • What is the area of the regular hexagon
    9·1 answer
  • A boy gets #2.00 per week as pocket money. His sister gets only #1.60 per week
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!