Answer:
Khan Academy.
Step-by-step explanation:
You can go on khan academy and search up "percentages and numbers." The videos should immediately pop up. there are also lessons if you don't want to risk getting your problem wrong. If you are still confused and do not understand please just comment and I will respond.
Answer:
To solve this problem, we can use a system of equations.
We know the quadratic expression has the form
Using points (1,12) and (4,0), we can form the following system to find a and b.
We need to divide the second equation by -4 and sum both equations
Then, we use this value to find the other variable
<h3>Therefore, the quadratic function that models the situation is</h3>
or
According to this expression, after 2 seconds, the height is 16 feet.
The student with the correct answer is Dylan who says the decimal should be placed between the 8 and 0.
This is base on the estimation that 3.01 is a two decimal place number, so the product 18.06 should also be in 2 decimal place.
<h3>How to find product of decimal number?</h3>
A decimal number is a number expressed in the decimal system (base 10).
Place value:
- Ten thousand
- Thousand
- Hundred
- Ten
- ones
- . decimal point
- tenth
- hundredths
- thousandth
- ten thousandth
- hundred thousandth
6 × 3.01
3.01
- 3 = ones
- . = decimal point
- 0 = tenth
- 1 = hundredth
6 × 3.01
= 18.06
Therefore, Lucas is incorrect with his answer that the decimal should be placed between the 1 and 8.
Read more on decimal number:
brainly.com/question/1827193
#SPJ1
Answer:
x = 50°
Step-by-step explanation:
sum of all angles of a quadrilateral is 360°
so, the other unknown angle be y
=》y + 40° + 110° + 80° = 360°
=》y + 230° = 360°
=》y = 360° - 230° = 130°
and the unknown angle + x = 180°
( because they for linear pair )
so, x + y = 180°
x + 130° = 180°
x = 180° - 130° = 50°
hence, x = 50°
Answer:
The two angles ADB and BDC are congruent since they are both right angles.
The segment AD and CD are congruent since D is the midpoint of AC.
Segment BD is in common for the two triangles.
The triangles ABD and BCD are congruent by SAS. In particular, Angle A is congruent to angle C (they are opposite to congruent sides), QED