9514 1404 393
Answer:
8000π mm^3/s ≈ 25,133 mm^3/s
Step-by-step explanation:
The rate of change of volume is found by differentiating the volume formula with respect to time.
V = 4/3πr^3
V' = 4πr^2·r'
For the given numbers, this is ...
V' = 4π(20 mm)^2·(5 mm/s) = 8000π mm^3/s ≈ 25,133 mm^3/s
_____
<em>Additional comment</em>
By comparing the derivative to the area formula for a sphere, you see that the rate of change of volume is the product of the area and the rate of change of radius. This sort of relationship will be seen for a number of different shapes.
Answer:
3 whole multiply by M subtracted from 7
Step-by-step explanation:
9514 1404 393
Answer:
- 0 ≤ m ≤ 7
- 0.4541 cm/month; average rate of growth over last 4 months of study
Step-by-step explanation:
<u>Part A</u>:
The study was concluded after 7 months. The fish cannot be expected to maintain exponential growth for any significant period beyond the observation period. A reasonable domain is ...
0 ≤ m ≤ 7
__
<u>Part B</u>:
The y-intercept is the value when m=0. It is the length of the fish at the start of the study.
__
<u>Part C</u>:
The average rate of change on the interval [3, 7] is given by ...
(f(7) -f(3))/(7 -3) = (4(1.08^7) -4(1.08^3))/4 = 1.08^3·(1.08^4 -1)
≈ 0.4541 cm/month
This is the average growth rate of the fish in cm per month over the period from 3 months to 7 months.
Answer:
53.13 degrees
Step-by-step explanation: