Two hydrogen and two oxygen multiply for two
Answer:
moving across te periodic table electronegativity increases.
Explanation:
as we move across a period the effective nuclear charge increases as the number of protons in nucleus increases. due to increase in effective nuclear charge electronegativity increases
The answer is: hydrogen peroxide, H2O2.
H₂O₂(hydrogen peroxide) is pale blue, clear, inorganic liquid.
It is liquid because hydrogen bonds between molecules.
Hydrogen bond is an electrostatic attraction between two polar groups that occurs when a hydrogen atom (H), covalently bound to a highly electronegative atom such as flourine (F), oxygen (O) and nitrogen (N) atoms.
Because of hydrogen bonds, hydrogen peroxide has higher melting and boiling temperatures than other molecules.
Answer:
0.558mole of SO₃
Explanation:
Given parameters:
Molar mass of SO₃ = 80.0632g/mol
Mass of S = 17.9g
Molar mass of S = 32.065g/mol
Number of moles of O₂ = 0.157mole
Molar mass of O₂ = 31.9988g/mol
Unknown:
Maximum amount of SO₃
Solution
We need to write the proper reaction equation.
2S + 3O₂ → 2SO₃
We should bear in mind that the extent of this reaction relies on the reactant that is in short supply i.e limiting reagent. Here the limiting reagent is the Sulfur, S. The oxygen gas would be in excess since it is readily availbale.
So we simply compare the molar relationship between sulfur and product formed to solve the problem:
First, find the number of moles of Sulfur, S:
Number of moles of S = 
Number of moles of S =
= 0.558mole
Now to find the maximum amount of SO₃ formed, compare the moles of reactant to the product:
2 mole of Sulfur produced 2 mole of SO₃
Therefore; 0.558mole of sulfur will produce 0.558mole of SO₃
Answer:
Strontium is a soluble earth metal with the nuclear number 38. Phosphate is a polyatomic particle containing phosphorus and oxygen molecules. Strontium loses electrons to turn out to be emphatically charged, and phosphate is an adversely charged particle.
Explanation: