Hydrogen peroxide breaks down into water and oxygen.
2H₂O₂ → 2H₂O + O₂
The yeast present contains an enzyme called catalase which catalyses the reaction.
More the amount of the catalyst added, faster will be the decomposition of the hydrogen peroxide.
Thus if we added more than 5 mL of yeast solution to the 2H₂O₂, the breakdown would occur faster. Thus the bubbles and the accompanying fizz would be much more.
Read more on Brainly.com - brainly.com/question/10670134#readmore
<span>number Moles of C = 54.5 g / 12.011 = 4.54
number Moles of H = 9.10 / 1.008 = 9.02
number Moles of O = 36.4 / 16 = 2.28
if we want to divide by the smallest number
4.54 / 2.28 = 2 => C
9.02 / 2.28 = 4 => H
2.28 / 2.28 = 1 => O
Empirical formula will be = C2H4O</span>
Answer: 41.5 mL
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.

where,
n = moles of solute
= volume of solution in L
Given : 59.4 g of
in 100 g of solution
moles of 
Volume of solution =
Now put all the given values in the formula of molality, we get

To calculate the volume of acid, we use the equation given by neutralisation reaction:

where,
are the molarity and volume of stock acid which is 
are the molarity and volume of dilute acid which is 
We are given:

Putting values in above equation, we get:

Thus 41.5 mL of the solution would be required to prepare 1550 mL of a .30M solution of the acid
The % yield of Ca(OH)₂ : 62.98%
<h3>Further eplanation
</h3>
Percent yield is the compare of the amount of product obtained from a reaction with the amount you calculated
General formula:
Percent yield = (Actual yield / theoretical yield )x 100%
An actual yield is the amount of product actually produced by the reaction. A theoretical yield is the amount of product that you calculate from the reaction equation according to the product and reactant coefficients
Reaction
CaO + H₂O ⇒ Ca(OH)₂
mass CaO= 4.2 g
mol CaO(MW=56,0774 g/mol) :

mol Ca(OH)₂ based on mol CaO
mol ratio CaO : Ca(OH)₂,= 1 : 1, so mol Ca(OH)₂ = 0.075
mass Ca(OH)₂(MW=74,093 g/mol) ⇒ theoretical

% yield :
