There is no X But Y is (0,5)
Answer: the rate at which the distance between the boats is increasing is 68 mph
Step-by-step explanation:
The direction of movement of both boats forms a right angle triangle. The distance travelled due south and due east by both boats represents the legs of the triangle. Their distance apart after t hours represents the hypotenuse of the right angle triangle.
Let x represent the length the shorter leg(south) of the right angle triangle.
Let y represent the length the longer leg(east) of the right angle triangle.
Let z represent the hypotenuse.
Applying Pythagoras theorem
Hypotenuse² = opposite side² + adjacent side²
Therefore
z² = x² + y²
To determine the rate at which the distances are changing, we would differentiate with respect to t. It becomes
2zdz/dt = 2xdx/dt + 2ydy/dt- - - -- - -1
One travels south at 32 mi/h and the other travels east at 60 mi/h. It means that
dx/dt = 32
dy/dt = 60
Distance = speed × time
Since t = 0.5 hour, then
x = 32 × 0.5 = 16 miles
y = 60 × 0.5 = 30 miles
z² = 16² + 30² = 256 + 900
z = √1156
z = 34 miles
Substituting these values into equation 1, it becomes
2 × 34 × dz/dt = (2 × 16 × 32) + 2 × 30 × 60
68dz/dt = 1024 + 3600
68dz/dt = 4624
dz/dt = 4624/68
dz/dt = 68 mph
If you were to make your own measurements, your significant digits should include all of the measurable digits (the digits that correspond to the marks on the ruler) as well as one estimated position beyond the smallest measureable digit (the 5 in 3.5 cm, and the 2 in 3.52 cm).
3(4m-2)-2(m+5)
Distribute.
12m-6-2m-10
12m-2m= 10m
-6-10= -16
10m-16
I hope this helps!
~kaikers
Answer:
The length of the shortest side of the triangle is 10.
Step-by-step explanation:
Given that the lengths of the sides of a triangle are 4, 5 and 6, if the length of the longest side of a similar triangle is 15, to determine what is the length of the shortest side of the triangle, the following calculation must be performed :
6 = 15
4 = X
4 x 15/6 = X
10 = X
Therefore, the length of the shortest side of the triangle is 10.