1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BigorU [14]
1 year ago
13

True or false. A separation technique that can be used for this investigation is centrifugation.

Physics
1 answer:
Radda [10]1 year ago
6 0
The answer is true because I just did this
You might be interested in
What is the difference b/w distance and displacement?
Vlada [557]
Distance is the actual path covered and displacement is the shortest distance from the object to the point of origin.

Please mark as brainliest if satisfied with answer
4 0
3 years ago
3.
Alborosie

Answer:

C

Explanation:

Acceleration is defined as a change in velocity over time. This means that as long as the forces are not zero, the velocity should be changing. The can be negative (as this is negative acceleration also known as deceleration) or positive (known as acceleration). It doesn't matter if they are decimals or fractions.

4 0
3 years ago
Read 2 more answers
In electronic circuits:______.
trapecia [35]

Answer:

(a), (c) and (e) s correct.

Explanation:

a. the power used by a circuit is the resistance times the current squared.

The power is given by P = I^2 R, so the statement is correct.  

b. electric and magnetic fields are transporting the energy.

false

c. electrons are transporting the energy.

The energy is transferred by flow of electrons. It is correct.  

d. the power used by a circuit is the voltage times the current squared.

The power is given by P  = V I, the statement is wrong.  

e. the power used by a circuit is the current times the voltage.

The power is given by P  = V I, the statement is correct.  

4 0
2 years ago
What is the first step in the formation of a protostar?
Fittoniya [83]

Star formation begins in relatively small molecular clouds called dense cores.[7] Each dense core is initially in balance between self-gravity, which tends to compress the object, and both gas pressure and magnetic pressure, which tend to inflate it. As the dense core accrues mass from its larger, surrounding cloud, self-gravity begins to overwhelm pressure, and collapse begins. Theoretical modeling of an idealized spherical cloud initially supported only by gas pressure indicates that the collapse process spreads from the inside toward the outside.[8] Spectroscopic observations of dense cores that do not yet contain stars indicate that contraction indeed occurs. So far, however, the predicted outward spread of the collapse region has not been observed.[9]

The gas that collapses toward the center of the dense core first builds up a low-mass protostar, and then a protoplanetary disk orbiting the object. As the collapse continues, an increasing amount of gas impacts the disk rather than the star, a consequence of angular momentum conservation. Exactly how material in the disk spirals inward onto the protostar is not yet understood, despite a great deal of theoretical effort. This problem is illustrative of the larger issue of accretion disk theory, which plays a role in much of astrophysics.

Regardless of the details, the outer surface of a protostar consists at least partially of shocked gas that has fallen from the inner edge of the disk. The surface is thus very different from the relatively quiescent photosphere of a pre-main sequence or main-sequence star. Within its deep interior, the protostar has lower temperature than an ordinary star. At its center, hydrogen is not yet undergoing nuclear fusion. Theory predicts, however, that the hydrogen isotope deuterium is undergoing fusion, creating helium-3. The heat from this fusion reaction tends to inflate the protostar, and thereby helps determine the size of the youngest observed pre-main-sequence stars.[11]

The energy generated from ordinary stars comes from the nuclear fusion occurring at their centers. Protostars also generate energy, but it comes from the radiation liberated at the shocks on its surface and on the surface of its surrounding disk. The radiation thus created most traverse the interstellar dust in the surrounding dense core. The dust absorbs all impinging photons and reradiates them at longer wavelengths. Consequently, a protostar is not detectable at optical wavelengths, and cannot be placed in the Hertzsprung-Russell diagram, unlike the more evolved pre-main-sequence stars.

The actual radiation emanating from a protostar is predicted to be in the infrared and millimeter regimes. Point-like sources of such long-wavelength radiation are commonly seen in regions that are obscured by molecular clouds. It is commonly believed that those conventionally labeled as Class 0 or Class I sources are protostars.[12][13] However, there is still no definitive evidence for this identification.

4 0
3 years ago
1) A uniform wooden beam, with mass of 120 and length L = 4 m, is supported as illustrated in the figure. If the static friction
Kobotan [32]

Answer:

1(a) 55.0°

1(b) 58.3°

2(a) 10.2 N

2(b) 2.61 m/s²

3(a) 76.7°

3(b) 12.8 m/s

3(c) 3.41 s

3(d) 21.8 m/s

3(e) 18.5 m

4(a) 7.35 m/s²

4(b) 31.3 m/s²

4(c) 12.8 m/s²

Explanation:

1) Draw a free body diagram on the beam.  There are five forces:

Weight force mg pulling down at the center of the beam,

Normal force Na pushing up at point A,

Friction force Na μa pushing left at point A,

Normal force Nb pushing perpendicular to the incline at point B,

Friction force Nb μb pushing up the incline at point B.

There are 3 unknown variables: Na, Nb, and θ.  So we're going to need 3 equations.

Sum of forces in the x direction:

∑F = ma

-Na μa + Nb sin φ − Nb μb cos φ = 0

Nb (sin φ − μb cos φ) = Na μa

Nb / Na = μa / (sin φ − μb cos φ)

Sum of forces in the y direction:

∑F = ma

Na + Nb cos φ + Nb μb sin φ − mg = 0

Na = mg − Nb (cos φ + μb sin φ)

Sum of torques about point B:

∑τ = Iα

-mg (L/2) cos θ + Na L cos θ − Na μa L sin θ = 0

mg (L/2) cos θ = Na L cos θ − Na μa L sin θ

mg cos θ = 2 Na cos θ − 2 Na μa sin θ

mg = 2 Na − 2 Na μa tan θ

Substitute:

Na = 2 Na − 2 Na μa tan θ − Nb (cos φ + μb sin φ)

0 = Na − 2 Na μa tan θ − Nb (cos φ + μb sin φ)

Na (1 − 2 μa tan θ) = Nb (cos φ + μb sin φ)

1 − 2 μa tan θ = (Nb / Na) (cos φ + μb sin φ)

2 μa tan θ = 1 − (Nb / Na) (cos φ + μb sin φ)

Substitute again:

2 μa tan θ = 1 − [μa / (sin φ − μb cos φ)] (cos φ + μb sin φ)

tan θ = 1/(2 μa) − (cos φ + μb sin φ) / (2 sin φ − 2 μb cos φ)

a) If φ = 70°, then θ = 55.0°.

b) If φ = 90°, then θ = 58.3°.

2) Draw a free body diagram of each mass.  For each mass, there are four forces.  For mass A:

Weight force Ma g pulling down,

Normal force Na pushing perpendicular to the incline,

Friction force Na μa pushing parallel down the incline,

Tension force T pulling parallel up the incline.

For mass B:

Weight force Mb g pulling down,

Normal force Nb pushing perpendicular to the incline,

Friction force Nb μb pushing parallel up the incline,

Tension force T pulling up the incline.

There are four unknown variables: Na, Nb, T, and a.  So we'll need four equations.

Sum of forces on A in the perpendicular direction:

∑F = ma

Na − Ma g cos θ = 0

Na = Ma g cos θ

Sum of forces on A up the incline:

∑F = ma

T − Na μa − Ma g sin θ = Ma a

T − Ma g cos θ μa − Ma g sin θ = Ma a

Sum of forces on B in the perpendicular direction:

∑F = ma

Nb − Mb g cos φ = 0

Nb = Mb g cos φ

Sum of forces on B down the incline:

∑F = ma

-T − Nb μb + Mb g sin φ = Mb a

-T − Mb g cos φ μb + Mb g sin φ = Mb a

Add together to eliminate T:

-Ma g cos θ μa − Ma g sin θ − Mb g cos φ μb + Mb g sin φ = Ma a + Mb a

g (-Ma (cos θ μa + sin θ) − Mb (cos φ μb − sin φ)) = (Ma + Mb) a

a = -g (Ma (cos θ μa + sin θ) + Mb (cos φ μb − sin φ)) / (Ma + Mb)

a = 2.61 m/s²

Plug into either equation to find T.

T = 10.2 N

3i) Given:

Δx = 3.7 m

vᵧ = 0 m/s

aₓ = 0 m/s²

aᵧ = -10 m/s²

t = 1.25 s

Find: v₀ₓ, v₀ᵧ

Δx = v₀ₓ t + ½ aₓ t²

3.7 m = v₀ₓ (1.25 s) + ½ (0 m/s²) (1.25 s)²

v₀ₓ = 2.96 m/s

vᵧ = aᵧt + v₀ᵧ

0 m/s = (-10 m/s²) (1.25 s) + v₀ᵧ

v₀ᵧ = 12.5 m/s

a) tan θ = v₀ᵧ / v₀ₓ

θ = 76.7°

b) v₀² = v₀ₓ² + v₀ᵧ²

v₀ = 12.8 m/s

3ii) Given:

Δx = D cos 57°

Δy = -D sin 57°

v₀ₓ = 2.96 m/s

v₀ᵧ = 12.5 m/s

aₓ = 0 m/s²

aᵧ = -10 m/s²

c) Find t

Δx = v₀ₓ t + ½ aₓ t²

D cos 57° = (2.96 m/s) t + ½ (0 m/s²) t²

D cos 57° = 2.96t

Δy = v₀ᵧ t + ½ aᵧ t²

-D sin 57° = (12.5 m/s) t + ½ (-10 m/s²) t²

-D sin 57° = 12.5t − 5t²

Divide:

-tan 57° = (12.5t − 5t²) / 2.96t

-4.558t = 12.5t − 5t²

0 = 17.058t  − 5t²

t = 3.41 s

d) Find v

vₓ = aₓt + v₀ₓ

vₓ = (0 m/s²) (3.41 s) + 2.96 m/s

vₓ = 2.96 m/s

vᵧ = aᵧt + v₀ᵧ

vᵧ = (-10 m/s²) (3.41 s) + 12.5 m/s

vᵧ = -21.6 m/s

v² = vₓ² + vᵧ²

v = 21.8 m/s

e) Find D.

D cos 57° = 2.96t

D = 18.5 m

4) Given:

R = 90 m

d = 140 m

v₀ = 0 m/s

at = 0.7t m/s²

The distance to the opposite side of the curve is:

140 m + (90 m) (π/2) = 281 m

a) Find Δx and v if t = 10.5 s.

at = 0.7t

Integrate:

vt = 0.35t² + v₀

vt = 0.35 (10.5)²

vt = 38.6 m/s

Integrate again:

Δx = 0.1167 t³ + v₀ t + x₀

Δx = 0.1167 (10.5)³

Δx = 135 m

The car has not yet reached the curve, so the acceleration is purely tangential.

at = 0.7 (10.5)

at = 7.35 m/s²

b) Find Δx and v if t = 12.2 s.

at = 0.7t

Integrate:

vt = 0.35t² + v₀

vt = 0.35 (12.2)²

vt = 52.1 m/s

Integrate again:

Δx = 0.1167 t³ + v₀ t + x₀

Δx = 0.1167 (12.2)³

Δx = 212 m

The car is in the curve, so it has both tangential and centripetal accelerations.

at = 0.7 (12.2)

at = 8.54 m/s²

ac = v² / r

ac = (52.1 m/s)² / (90 m)

ac = 30.2 m/s²

a² = at² + ac²

a = 31.3 m/s²

c) Given:

Δx = 187 m

v₀ = 0 m/s

at = 3 m/s²

Find: v

v² = v₀² + 2aΔx

v² = (0 m/s)² + 2 (3 m/s²) (187 m)

v = 33.5 m/s

ac = v² / r

ac = (33.5 m/s)² / 90 m

ac = 12.5 m/s²

a² = at² + ac²

a = 12.8 m/s²

5 0
3 years ago
Other questions:
  • Iron has a mass of 7.87 g per cubic centimeter of volume, and the mass of an iron atom is 9.27 × 10-26 kg. If you simplify and t
    8·1 answer
  • "a 2.0-m straight wire carrying a current of 0.60 a is oriented parallel to a uniform magnetic field of 0.50 t. what is the magn
    14·1 answer
  • Real life example in which linear motion is not uniform motion.
    14·1 answer
  • Building a new highway destroys habitats and can lead to soil erosion
    12·2 answers
  • How much energy is needed to melt 600 g of ice at 0 degrees C?
    5·1 answer
  • A cable passes over a pulley. Because the cable grips the pulley and the pulley has nonzero mass, the tension in the cable is no
    12·1 answer
  • A student's pencil rolls off a desk and lands 0.47 m away from the edge of the
    15·1 answer
  • 8.
    13·1 answer
  • What are the three types of bones cells types and what are their function​
    11·1 answer
  • FIRST ANSWER GETS BRAINLIST:
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!