Our data are,
State 1:

State 2:

We know as well that 
To find the mass we apply the ideal gas formula, which is given by

Re-arrange for m,

Because of the pressure, temperature and volume ratio of state 1 and 2, we have to

Replacing,

For conservative energy we have, (Cv = 0.718)

Answer:
14.7 m/s.
Explanation:
From the question given above, the following data were obtained:
Time (t) = 1.5 s
Acceleration due to gravity (g) = 9.8 m/s².
Height = 11.025 m
Final velocity (v) = 0 m/s
Initial velocity (u) =?
We, can obtain the initial velocity of the penny as follow:
H = ½(v + u) t
11.025 = ½ (0 + u) × 1.5
11.025 = ½ × u × 1.5
11.025 = u × 0.75
Divide both side by 0.75
u = 11.025/0.75
u = 14.7 m/s
Therefore, the penny was travelling at 14.7 m/s before hitting the ground.
Answer:
v = 1.4 m /s
Explanation:
We shall apply law of conservation of mechanical energy
The kinetic energy of dart and block is converted into potential energy of both dart and block .
1 /2 (m+M) v² = ( m +M) gH
.5 x v² = 9.8 x .1
= v² = 1.96
v = 1.4
v = 1.4 m /s
Since the elevator is moving with a constant speed and not accelerating, the tension in the string is simply the normal, routine, everyday boring weight of the object. Since the elevator is moving with a constant speed and not accelerating, the tension in the string is simply the normal, routine, everyday boring weight of the object.
It slows the object down so it cannot move well and evetually the object cannot be pushed and farther