Answer:
Explanation:
Velocity of sound in air at 20 degree = 343 m/s
Velocity of sound in water at 20 degree = 1470 m/s
Time taken in to and fro movement in air
=( 2 x 10) / 343 = 0.0583 s
Rest of the time is
.171 - .0583 = .1127 s
This time is taken to cover distance in water. If d be the depth of lake
2d / velocity = time taken
2 d / 1470 = .1127
d = 82.83 m
Ok i apologise for the messy working but I'll try and explain my attempt at logic
Also note i ignore any air resistance for this.
First i wrote the two equations I'd most likely need for this situation, the kinetic energy equation and the potential energy equation.
Because the energy right at the top of the swing motion is equal to the energy right in the "bottom" of the swing's motion (due to conservation of energy), i made the kinetic energy equal to the potential energy as indicated by Ek = Ep.
I also noted the "initial" and "final" height of the swing with hi and hf respectively.
So initially looking at this i thought, what the heck, there's no mass. Then i figured that using the conservation of energy law i could take the mass value from the Ek equation and use it in the Ep equation. So what i did was take the Ek equation and rearranged it for m as you can hopefully see. Then i substituted the rearranged Ek equation into the Ep equation.
So then the equation reads something like Ep = (rearranged Ek equation for m) × g (which is -9.81) × change in height (hf - hi).
Then i simplify the equation a little. When i multiply both sides by v^2 i can clearly see that there is one E on each side (at that stage i don't need to clarify which type of energy it is because Ek = Ep so they're just the same anyway). So i just canceled them out and square rooted both sides.
The answer i got was that the max velocity would be 4.85m/s 3sf, assuming no losses (eg energy lost to friction).
I do hope I'm right and i suppose it's better than a blank piece of paper good luck my dude xx
Explanation:
because it doesn't depend upon other unit like kg meter and second
Answer:
Time, size, distance, speed, direction, weight, volume, temperature, pressure, force, sound, light, energy—these are among the physical properties for which humans have developed accurate measures, without which we could not live our normal daily lives. Measurement permeates every aspect of human life.
I would say that insofar as the two stars temperatures are presumably closely related to their luminosity, that the blue star at 156,100 k compared to 3000k for the red star then the blue star has a luminosity of 52 times that of the red star.