Explanation:
(a) A circuit has 50 Ω, a 100Ω and a 150 Ω resistor are connected in series. We know that in series combination, current through each resistor is same. So, current through a 50 Ω, a 100Ω and a 150 Ω resistor is same.
(b) Ohm's law of given by :
V = I R
V is potential difference. As I is same, so, the resistor having highest resistance will have highest potential difference. So,
.
Hence, this is the required solution.
I think it is B. Sorry if I’m wrong
First, you make a diagram of all the forces acting on the system. This is shown in the figure. We have to determine F1 and F4. Let's do a momentum balance. Momentum is conserved so the summation of all momentum is equal to zero. Momentum is force*distance.
To determine F1: (reference is F4, so F4=0)
∑Momentum = 0 = -F2 - F3 + F1
0 = (-4 kg)(9.81 m/s2)(0.25m)-(6kg)(9.81 m/s2)(0.5-0.3m)+F1(0.5-0.1m)
F1 = 53.96 N (left knife-edge)To determine F4: (reference is F1, so F1=0)
∑Momentum = 0 = -F2 - F3 + F4
0 = (-4 kg)(9.81 m/s2)(0.25m)-(6kg)(9.81 m/s2)(0.5-0.2m)+F4(0.5-0.1m)
F4 = 68.67 N (right knife-edge)
Answer:

Explanation:
Use the Kinematic Equation:

Plug in what is given and solve


Answer:
factor that bug maximum KE change is 0.52284
Explanation:
given data
vertical distance = 6.5 cm
ripples decrease to = 4.7 cm
solution
We apply here formula for the KE of particle that executes the simple harmonic motion that is express as
KE = (0.5) × m × A² × ω² .................1
and kinetic energy is directly proportional to square of the amplitude.
so
.............2

= 0.52284
so factor that bug maximum KE change is 0.52284