Answer:
a) The trajectory will be a helical path.
b) θ = 2*π rad
Explanation:
a) Since the initial velocity of the particle has a component parallel (x-component) to the magnetic field B
, the trajectory will be a helical path.
b) Given
t = 2*π*m/(q*B)
We can use the equation
θ = ω*Δt
where
θ is the angular displacement
ω is the angular speed, which is obtained as follows:
ω = q*B/m
then we have
θ = (q*B/m)*2*π*m/(q*B)
⇒ θ = 2*π rad
Answer:
his feet feel warmer because of friction. when friction takes place then an object will warm up because friction is a universal law that always takes place. if you rub your hands together, you also experience the heat of frictional I hope that helped.
Answer:
The final kinetic energy is
Explanation:
From the question we are told that
The electric field is 
The charge on the object is 
The mass of the object is 
The distance moved by the object is 
The workdone on the object by the fields is mathematically represented as
![W = [qE + mg]d](https://tex.z-dn.net/?f=W%20%3D%20%20%5BqE%20%2B%20mg%5Dd)
Now this workdone is equivalent to the final kinetic energy so
![K = W = [qE + mg]d](https://tex.z-dn.net/?f=K%20%3D%20W%20%3D%20%20%5BqE%20%2B%20mg%5Dd)
substituting values
![K = W = [4.5*10^{-3 } *100 + 0.68 * 9.8]* 1](https://tex.z-dn.net/?f=K%20%3D%20W%20%3D%20%20%5B4.5%2A10%5E%7B-3%20%20%7D%20%2A100%20%20%2B%200.68%20%2A%209.8%5D%2A%201)

Answer:
The Challenges of Using Natural Resources
Extracting, processing and using natural resources can cause environmental problems such as: air, land and water pollution; disruption or destruction of ecosystems; and a decrease in biodiversity.
Answer:
ms⁻¹
Explanation:
= diameter of merry-go-round = 4 m
= radius of merry-go-round =
=
= 2 m
= moment of inertia = 500 kgm²
= angular velocity of merry-go-round before ryan jumps = 2.0 rad/s
= angular velocity of merry-go-round after ryan jumps = 0 rad/s
= velocity of ryan before jumping onto the merry-go-round
= mass of ryan = 70 kg
Using conservation of angular momentum



ms⁻¹