Answer:
5.7 moles of O2
Explanation:
We'll begin by writing the balanced decomposition equation for the reaction. This is illustrated below:
2KClO3 —> 2KCl + 3O2
From the balanced equation above,
2 moles of KClO3 decomposed to produce 3 moles of O2.
Next, we shall determine the number of mole of O2 produced by the reaction of 3.8 moles of KClO3.
Since 100% yield of O2 is obtained, it means that both the actual yield and theoretical yield of O2 are the same. Thus, we can obtain the number of mole of O2 produced as follow:
From the balanced equation above,
2 moles of KClO3 decomposed to produce 3 moles of O2.
Therefore, 3.8 moles of KClO3 will decompose to produce = (3.8 × 3)/2 = 5.7 moles of O2.
Thus, 5.7 moles of O2 were obtained from the reaction.
A geomagnetic storm (commonly referred to as a solar storm) is a temporary disturbance of the Earth's magnetosphere caused by a solar wind shock wave and/or cloud of magnetic field that interacts with the Earth's magnetic field.
Solar flares, coronal mass ejections, high-speed solar wind, and solar energetic particles are all forms of solar activity.
Heat can travel from one place to another in three ways: Conduction, Convection and Radiation. Both conduction and convection require matter to transfer heat. If there is a temperature difference between two systems heat will always find a way to transfer from the higher to lower system.
Answer:
fundamental frequency in helium = 729.8 Hz
Explanation:
Fundamental frequency of an ope tube/pipe = v/2L
where v is velocity of sound in air = 340 m/s; λ is wave length of wave = 2L ; L is length of the pipe
To find the length of the pipe,
frequency = velocity of sound / 2L
272 = 340 / 2 L
L = 0.625 m
If the pipe is filled with helium at the same temperature, the velocity of sound will change as well as the frequency of note produced since velocity is directly proportional to frequency of sound.
Also, the velocity of sound is inversely proportional to square root of molar mass of gas; v ∝ 1/√m
v₁/v₂ = √m₂/m₁
v₁ = velocity of sound in air, v₂ = velocity of sound in helium, m₁ = molar mass of air, m₂ = molar mass of helium
340 / v = √4 / 28.8
v₂ = 340 / 0. 3727
v₂ = 912.26 m /s
fundamental frequency in helium = v₂ / 2L
fundamental frequency in helium = 912.26 / (2 x 0.625)
fundamental frequency in helium = 729.8 Hz
I think it might be nitride