Answer:
C) a sample distribution of a sample mean with n = 10

and 
Step-by-step explanation:
Here, the random experiment is rolling 10, 6 faced (with faces numbered from 1 to 6) fair dice and recording the average of the numbers which comes up and the experiment is repeated 20 times.So, here sample size, n = 20 .
Let,
= The number which comes up on the ith die on the jth trial.
∀ i = 1(1)10 and j = 1(1)20
Then,
= 
= 3.5 ∀ i = 1(1)10 and j = 1(1)20
and,
= 
= 
= 
15.166667
so,
= 

= 2.91667
and
= ![\sqrt {2.91667}[/tex [tex]\simeq 1.7078261036](https://tex.z-dn.net/?f=%5Csqrt%20%7B2.91667%7D%5B%2Ftex%3C%2Fp%3E%3Cp%3E%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Btex%5D%5Csimeq%201.7078261036)
Now we get that,

We get that
are iid RV's ∀ j = 1(1)20
Let, 
So, we get that 
=
for any i = 1(1)10
= 3.5
and,
![\sigma_{({\overline}{Y})} = \frac {\sigma_{Y_{j}}}{\sqrt {20}} = \frac {\sigma_{X_{ij}}}{\sqrt {20}} = \frac {1.7078261036}{\sqrt {20}} [tex]\simeq 0.38](https://tex.z-dn.net/?f=%5Csigma_%7B%28%7B%5Coverline%7D%7BY%7D%29%7D%20%3D%20%5Cfrac%20%7B%5Csigma_%7BY_%7Bj%7D%7D%7D%7B%5Csqrt%20%7B20%7D%7D%3C%2Fp%3E%3Cp%3E%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3D%20%5Cfrac%20%7B%5Csigma_%7BX_%7Bij%7D%7D%7D%7B%5Csqrt%20%7B20%7D%7D%3C%2Fp%3E%3Cp%3E%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3D%20%5Cfrac%20%7B1.7078261036%7D%7B%5Csqrt%20%7B20%7D%7D%3C%2Fp%3E%3Cp%3E%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Btex%5D%5Csimeq%200.38)
Hence, the option which best describes the distribution being simulated is given by,
C) a sample distribution of a sample mean with n = 10

and 
Answer:
6:09
Step-by-step explanation:
clocks are cool and fun
Answer:
its the last one I think.
I would use subsitution
y=x-7
sub x-7 for every x
5x+2(x-7)=14
5x+2x-14=14
add 14 to both sides
7x=28
divide both sides by 7
x=4
sub
y=x-7
y=4-7
y=-3
x=4
y=-3
(4,-3)
9514 1404 393
Explanation:
The three Reasons tell you what to look for to put in the Statement blank.
1. We are given that RE = 2AR and RT = 2GR.
2. The only vertical angles in the figure are ...
∠GRA ≅ ∠TRE
3. Using the given relation between the sides, we can write the proportion ...
RE/RA = RT/RG = 2
It is nice, though maybe not absolutely essential, to write the segment names in order of corresponding vertices.
4. Having shown that two sides are proportional and the angle between them is congruent, we can claim similarity using the SAS Theorem.