Answer:
2.05*10⁻⁵ moles of CF₂ can dissolve in 100 g of water.
12.82 moles of CaF₂ will dissolve in exactly 1.00 L of solution
Explanation:
First, by definition of solubility, in 100 g of water there are 0.0016 g of CaF₂. So, to know how many moles are 0.0016 g, you must know the molar mass of the compound. For that you know:
- Ca: 40 g/mole
- F: 19 g/mole
So the molar mass of CaF₂ is:
CaF₂= 40 g/mole + 2*19 g/mole= 78 g/mole
Now you can apply the following rule of three: if there are 78 grams of CaF₂ in 1 mole, in 0.0016 grams of the compound how many moles are there?

moles=2.05*10⁻⁵
<u><em>2.05*10⁻⁵ moles of CF₂ can dissolve in 100 g of water.</em></u>
Now, to answer the following question, you can apply the following rule of three: if by definition of density in 1 mL there is 1 g of CaF₂, in 1000 mL (where 1L = 1000mL) how much mass of the compound is there?

mass of CaF₂= 1000 g
Now you can apply the following rule of three: if there are 78 grams of CaF₂ in 1 mole, in 1000 grams of the compound how many moles are there?

moles=12.82
<u><em>12.82 moles of CaF₂ will dissolve in exactly 1.00 L of solution</em></u>
Answer:
It would increase the final quantity of products
Explanation:
According to the Le- Chatelier principle,
At equilibrium state when stress is applied to the system, the system will behave in such a way to nullify the stress.
The equilibrium can be disturb,
By changing the concentration
By changing the volume
By changing the pressure
By changing the temperature
Consider the following chemical reaction.
Chemical reaction:
2NO₂ ⇄ N₂O₄
In this reaction the equilibrium is disturb by increasing the concentration of reactant.
When the concentration of reactant is increased the system will proceed in forward direction in order to regain the equilibrium. Because when reactant concentration is high it means reaction is not on equilibrium state. As the concentration of NO₂ increased the reaction proceed in forward direction to regain the equilibrium state and more product is formed.
Answer:
Attraction between molecules of methane in liquid state is primarily due to "London dispersion force".
Explanation:
Methane is a non-polar and aprotic molecule. Hence there is no dipole moment in methane as well as no chance of hydrogen bonding formation by methane.
We know that all molecules contain electrons. Therefore transient dipole arises in every molecule due to revolution of electrons around nucleus in a non-circular orbit. Hence an weak intermolecular attraction force is always present in every molecule as a result of this which is termed as "London dispersion force".
So, attraction between molecules of methane in liquid state is primarily due to "London dispersion force".
Answer:
I think it might the answer might be true, im sure you can find this in online tho