Molecules starts to get farther apart from each other. At boiling point the state of water changes to gas.
Answer:
Maximum gravitational Force: 
Explanation:
The maximum gravitational force is achieved when the center of gravity are the closer they can be. For the spheres the center of gravity is at the center of it, so the closer this two centers of gravity can be is:
bowling ball radius + billiard ball radius = 0,128 m
The general equation for the magnitude of gravitational force is:

Solving for:




The result is:

It will take 1.11 min to heat the sample to its melting point.
Melting point = - 20°C
Boiling point = 85°C
∆H of fusion = 180 J/g
∆H of vap = 500 J/g
C(solid) = 1.0 J/g °C
C(liquid) = 2.5 J/g °C
C(gas) = 0.5 J/g °C
Mass of sample = 25 g
Initial temperature = - 40°C
Final temperature = 100°C
Rate of heating = 450 J/min
Specific heat capacity formula:- q = m ×C×∆T
Here, q = heat energy
m = mass
C = specific heat
∆T = temperature change
Melting point = - 20°C
C(solid) = 1.0 J/g °C
∆T = final temperature - initial temperature = -20 - (-40) = 20
Put these value in Specific heat capacity formula
q = m ×C×∆T
q = 25×1.0×20
=500J
The Rate of heating = 450 J/min
i.e. 450J = 1min
so, 500J = 1.11min
1.11 minutes does it take to heat the sample to its melting point.
The specific heat capacity is defined as the amount of heat absorbed in line with unit mass of the material whilst its temperature increases 1 °C.
Learn more about specific heat capacity here:- brainly.com/question/26866234
#SPJ4
Answer:
Answer: (b) F
Explanation:
Sodium has 1, magnesium has 2 and Aluminium has 3 electrons in its outermost shell whereas Fluorine has 7 electrons in its outermost shell hence Fluorine does not lose electrons easily.
The electronic configuration of fluorine is 2,7.
Fluorine is the ninth element with a total of 9 electrons.
The first two electrons will go in the 1s orbital.
The next 2 electrons for F go in the 2s orbital.
The remaining five electrons will go in the 2p orbital. Therefore the F electron configuration will be 1s22s22p5.
The effective speed (rms) of the oxygen gas is 293.68 m/s.
<h3>
</h3><h3>What is Root-mean-square velocity?</h3>
Root mean square velocity is the square root of the mean of squares of the velocity of individual gas molecules
![v_{rms}=\sqrt[]{\frac{3RT}{M} }](https://tex.z-dn.net/?f=v_%7Brms%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B3RT%7D%7BM%7D%20%7D)
<em>where </em>R = universal gas constant
M = molar mass of the gas in kg/mol
T = temperature in Kelvin
According to the ideal gas law,
PV = nRT
RT = 
Substitute in the rms velocity formula,
![v_{rms} = \sqrt[]{\frac{3PV}{nM} }](https://tex.z-dn.net/?f=v_%7Brms%7D%20%3D%20%5Csqrt%5B%5D%7B%5Cfrac%7B3PV%7D%7BnM%7D%20%7D)
P = 92 kPa, V = 10 L, n = 2 moles and M = 32 x 10⁻³ kg/mol
![v_{rms} = \sqrt[]{\frac{3\times92\times10}{2\times32\times10^-^3} }](https://tex.z-dn.net/?f=v_%7Brms%7D%20%3D%20%5Csqrt%5B%5D%7B%5Cfrac%7B3%5Ctimes92%5Ctimes10%7D%7B2%5Ctimes32%5Ctimes10%5E-%5E3%7D%20%7D)
=293.68 m/s
Thus, the effective speed (rms) of O₂ gas is 293.68 m/s.
Learn more about Root-mean-square velocity:
brainly.com/question/15995507
#SPJ4