Answer:
(1/2,4)
Step-by-step explanation:
First, determine y in first equation: 2x+y=5 or y=5-2x
replace value of y determined in first equation (5-2x) into 2nd equation
4x-3(5-2x)=-10
4x-15+6x=10
10x=5
x=1/2
put value of x into either equation to solve for y so
2(1/2)+y=5
1+y=5
y=4
answer: x=1/2, y=4
check answer by substituting x and y into either equation:
4x-3y=-10
4(1/2)-3(4)=-10
2-12=-10
-10=-10
or
2x+y=5
2(1/2)+4=5
1+4=5
5=5
Answer: 554
Step-by-step explanation:
If prior population proportion is known, then the formula to find the sample size is given by :-

As per given description, we have
p= 0.1
E=0.025
Critical z-value for 95% confidence : 
Then,

Hence, the minimum sample size required = 554.
Answer:
D h(x) = f(x)×g(x)
Step-by-step explanation:
h(x) has a wave with 2 changes in direction.
so, this needs to be an expression of the third degree (there must be a term with x³ as the highest power of x).
and that is only possible when multiplying both basic functions. all the other options would keep it at second degree (x²) or render it even to a first degree (linear).
Find Volume of 1 tennis ball:----------------------------------------------Volume of 1 tennis ball = 4/3 x 3.14 x (2.5 ÷ 2)³
Volume of 1 tennis ball = 8.18 in³
----------------------------------------------Find Volume of 3 tennis balls:----------------------------------------------Volume of 3 tennis balls = 8.18 x 3 = 24.54 in³
----------------------------------------------Find Volume of teh cylindrical canister:----------------------------------------------Volume of the cylindrical canister = 3.14 x 1.5² x (2.5 x 3)
Volume of the cylindrical canister = 52.99 in³
----------------------------------------------Find unoccupied space:----------------------------------------------Unoccupied space = 52.99 - 24.54
Unoccupied space = 28.45 in³
----------------------------------------------Answer: 28.45 in³----------------------------------------------
Step-by-step explanation:
S = ∫ 2π y ds
ds = √(1 + (dx/dy)²) dy
ds = √(1 + (8y)²) dy
ds = √(1 + 64y²) dy
S = ∫₁² 2π y √(1 + 64y²) dy
S = π/64 ∫₁² 128y √(1 + 64y²) dy
S = π/64 [⅔ (1 + 64y²)^(³/₂)] |₁²
S = π/96 (1 + 64y²)^(³/₂) |₁²
S = π/96 (1 + 256)^(³/₂) − π/96 (1 + 64)^(³/₂)
S = π/96 (257√257) − π/96 (65√65)
S = π/96 (257√257 − 65√65)