For speed of sound of c=340m/s:
f'=f((c+Vr)/(c+Vs)) where Vr is speed of receiver (+ if moving towards source) and Vs is speed of source (+ if moving away from receiver)
So A) 596Hz
B) 275Hz
Answer
It can cause the system to increase its output more and more.
Answer:
the direction of resulting acceleration will Positive Direction
a. The disk starts at rest, so its angular displacement at time
is

It rotates 44.5 rad in this time, so we have

b. Since acceleration is constant, the average angular velocity is

where
is the angular velocity achieved after 6.00 s. The velocity of the disk at time
is

so we have

making the average velocity

Another way to find the average velocity is to compute it directly via

c. We already found this using the first method in part (b),

d. We already know

so this is just a matter of plugging in
. We get

Or to make things slightly more interesting, we could have taken the end of the first 6.00 s interval to be the start of the next 6.00 s interval, so that

Then for
we would get the same
.
The answer is true: the pressure of a gas will decrease as temperature decreases in a rigid container.
This is one of the central gas laws called the Gay-Lussac law that states for a given gas at a constant volume, the pressure of the gas is directly proportional to its temperature. We also know that as temperature reduces, so too does molecular interaction. Increased temperature results in increased pressure, and decreased temperature therefore results in decreased pressure.