Gravity is a force because it pulls down on objects.
The short answer is that the displacement is equal tothe area under the curve in the velocity-time graph. The region under the curve in the first 4.0 s is a triangle with height 10.0 m/s and length 4.0 s, so its area - and hence the displacement - is
1/2 • (10.0 m/s) • (4.0 s) = 20.00 m
Another way to derive this: since velocity is linear over the first 4.0 s, that means acceleration is constant. Recall that average velocity is defined as
<em>v</em> (ave) = ∆<em>x</em> / ∆<em>t</em>
and under constant acceleration,
<em>v</em> (ave) = (<em>v</em> (final) + <em>v</em> (initial)) / 2
According to the plot, with ∆<em>t</em> = 4.0 s, we have <em>v</em> (initial) = 0 and <em>v</em> (final) = 10.0 m/s, so
∆<em>x</em> / (4.0 s) = (10.0 m/s) / 2
∆<em>x</em> = ((4.0 s) • (10.0 m/s)) / 2
∆<em>x</em> = 20.00 m
Velocity is define as how fast an object is moving, and in what direction, it is a vector quantity, meaning velocity has both magnitude and direction. Anything goes to the left is negative, and anything goes to the right is positive.
a. Direction from east to west, given distance 11.5 meters, and time of 7.10 s
V = displacement/time V = -11.5/7.10 S V = -1.62 m/s (going left)
b. Joaquin reaches his original position. Displacement is now zero.
Velocity of the lawnmower is equal to "zero" but if we calculate for the average speed of the lawn, you just have to add the distance covered and the time it take to go back at the original position or point of origin
Answer:
The distance is 55.636 billion miles, or 528.2 AU.
Explanation:
Since the distance from the Sun to Neptune is 2.7818 billion miles, the distance from the Sun to Planet Nine would be 20 times that, which is:

or 55.636 billion miles.
Since 1 astronomical unit (AU) is 93 million miles, that distance is also:

Answer:
a) the distance between her and the wall is 13 m
b) the period of her up-and-down motion is 6.5 s
Explanation:
Given the data in the question;
wavelength λ = 26 m
velocity v = 4.0 m/s
a) How far from the wall is she?
Now, The first antinode is formed at a distance λ/2 from the wall, since the separation distance between the person and wall is;
x = λ/2
we substitute
x = 26 m / 2
x = 13 m
Therefore, the distance between her and the wall is 13 m
b) What is the period of her up-and-down motion?
we know that the relationship between frequency, wavelength and wave speed is;
v = fλ
hence, f = v/λ
we also know that frequency is expressed as the reciprocal of the time period;
f = 1/T
Hence
1/T = v/λ
solve for T
Tv = λ
T = λ/v
we substitute
T = 26 m / 4 m/s
T = 6.5 s
Therefore, the period of her up-and-down motion is 6.5 s