The hydrogen bonds that form between water molecules account for some of the essential and unique properties of water. The attraction created by hydrogen bonds keepswater liquid over a wider range of temperature than is found for any other molecule its size.
Hope this helped!
The % yield of Ca(OH)₂ : 62.98%
<h3>Further eplanation
</h3>
Percent yield is the compare of the amount of product obtained from a reaction with the amount you calculated
General formula:
Percent yield = (Actual yield / theoretical yield )x 100%
An actual yield is the amount of product actually produced by the reaction. A theoretical yield is the amount of product that you calculate from the reaction equation according to the product and reactant coefficients
Reaction
CaO + H₂O ⇒ Ca(OH)₂
mass CaO= 4.2 g
mol CaO(MW=56,0774 g/mol) :

mol Ca(OH)₂ based on mol CaO
mol ratio CaO : Ca(OH)₂,= 1 : 1, so mol Ca(OH)₂ = 0.075
mass Ca(OH)₂(MW=74,093 g/mol) ⇒ theoretical

% yield :

This problem is asking for the percent by mass of hydrogen in hydrofluoric acid. At the end, the answer turns out to be D. 5% as shown below:
<h3>Percent compositions:</h3>
In chemistry, percent compositions are used for us to know the relative amount of a specific element in a compound. In order to do so for hydrogen, we use the following formula, which can also be applied to any other element in a given compound:

Where
stands for the atomic mass of hydrogen and
for the molar mass of hydrofluoric acid. In such a way, we plug in the atomic masses of hydrogen (1.01 g/mol) and fluorine (19.0 g/mol) to obtain:

Learn more about percent compositions: brainly.com/question/12247957
The number of carbon atoms in an alcohol affects its solubility in water, as shown in Table 13.3. As the length of the carbon chain increases, the polar OH group becomes an ever smaller part of the molecule, and the molecule becomes more like a hydrocarbon. The solubility of the alcohol decreases correspondingly.
Answer:
D. The relationship between volume and moles
Explanation:
Amedo Avogadro found the relationship between the volume of a gas and the number of molecules contained in the volume.
The law states that "equal volume of all gases at the same temperature and pressure contains the same number of molecules or moles".
Mathematically:
V ∝ n (P,T constant)