The HONC 1234 rule is a way to remember the bonding tendencies of hydrogen, oxygen, nitrogen, and carbon atoms in molecules. Hydrogen tends to form one bond, oxygen two, nitrogen three and carbon four.
Answer:
Low value for copper recovery
Explanation:
The percentage recovery is obtained from;
Percent recovery = amount of substance you actually collected / amount of substance you were supposed to collect × 100
Note that the fact that some of the copper nitrate solution splashed out of the beaker means that some amount copper has been lost from the system. This loss of copper leads to a lower value of copper recovered from solution.
Answer:
30.62 L
Explanation:
From the question given above, the following data were obtained:
Initial volume (V₁) = 55 L
Initial pressure (P₁) = 3.2 atm
Initial temperature (T₁) = 520 K
Final temperature (T₂) = 760 K
Final pressure (P₂) = 8.4 atm
Final volume (V₂) =?
The final volume of the gas can be obtained as follow:
P₁V₁ / T₁ = P₂V₂ / T₂
3.2 × 55 / 520 = 8.4 × V₂ / 760
176 / 520 = 8.4 × V₂ / 760
Cross multiply
520 × 8.4 × V₂ = 176 × 760
4368 × V₂ = 133760
Divide both side by 4368
V₂ = 133760 / 4368
V₂ = 30.62 L
Therefore, the new volume of the gas is 30.62 L
Answer:
Density of unit cell ( rhodium) = 12.279 g/cm³
Explanation:
Given that:
The radius (r) of a rhodium atom = 135 pm
The atomic mass of rhodium = 102.90 amu
For a face-centered cubic unit cell,
where;
a = edge length.
Making "a" the subject of the formula:
a = 381.8 pm
to cm, we get:
a = 381.8 × 10⁻¹⁰ cm
However, recall that:
where;
mass of unit cell = mass of atom × numbers of atoms per unit cell
Also;
Recall also that number of atoms in a unit cell for a face-centered cubic = 4
So;
mass of unit cell = 6.83380375 × 10⁻²² g
Density of unit cell ( rhodium) = 12.279 g/cm³
Answer: theres no image or claim