The molar mass of the gene fragment is 19182 g/mol.
What is osmotic pressure ?
Osmotic pressure is the minimum pressure which needs to be applied to a solution to prevent the inward flow of its pure solvent across a semipermeable membrane. It is also defined as the measure of the tendency of a solution to take in a pure solvent by osmosis. Potential osmotic pressure is the maximum osmotic pressure that could develop in a solution if it were separated from its pure solvent by a semipermeable membrane.
We employ the osmotic pressure equation to determine the solute's concentration, which is:
π = iMRT
Using the values in the equation above, we obtain: 19182 g/mol.
To learn more about gene fragment click on the link below:
brainly.com/question/22426204
#SPJ4
Answer:
0.912 mL
Explanation:
3 Na2S(aq) + 2 FeCl3(aq) → Fe2S3(s) + 6 NaCl(aq)
FeCl3 is the limiting reactant.
Number of moles of iron III sulphide produced= 3.75g/87.92 g/mol = 0.043 moles
Hence actual yield of Iron III sulphide = 0.043 moles
Theoretical yield of Iron III sulphide = actual yield ×100%/ %yield
Theoretical yield of iron III sulphide= 0.043 ×100/75 = 0.057 moles of Iron III sulphide
From the reaction equation,
2moles of iron III chloride produced 1 mole of iron III sulphide
x moles of iron III chloride, will produce 0.057 of iron III sulphide
x= 2× 0.057= 0.114 moles of iron III chloride
But
Volume= number of moles/ concentration
Volume= 0.114/0.125
Volume= 0.912 mL
Answer:
The tendency of metals to lose electrons inorder to get stability is called electropositive nature ofmetals. In general most of the metalslose electrons from their valence shell due to weak force of attraction on the outermost shell.
It provides a history on how plants and animals have changed over time