Answer:
P = 5.22 Kg.m/s
Explanation:
given,
mass of the projectile = 1.8 Kg
speed of the target = 4.8 m/s
angle of deflection = 60°
Speed after collision = 2.9 m/s
magnitude of momentum after collision = ?
initial momentum of the body = m x v
= 1.8 x 4.8 = 8.64 kg.m/s
final momentum after collision
momentum along x-direction
P_x = m v cos θ
P_x = 1.8 x 2.9 x cos 60°
P_x = 2.61 kg.m/s
momentum along y-direction
P_y = m v sin θ
P_y = 1.8 x 2.9 x sin 60°
P_y = 4.52 kg.m/s
net momentum of the body


P = 5.22 Kg.m/s
momentum magnitude after collision is equal to P = 5.22 Kg.m/s
Answer:7 cm/s
Explanation:
Given
Particle move along curve

As it reaches the (2,3) its y coordinate is increasing at 14 cm/s
Differentiating y w.r.t time
Now at (2,3)

Answer:
10.125 meters?
Explanation:
Im taking 5.75m/s + 1.25 m/s/s (3.5) = my answer.
In those 3.5 seconds it travels 4.375.
I added that to 5.75 to get 10.125m
Answer:
α = 2,857 10⁻⁵ ºC⁻¹
Explanation:
The thermal expansion of materials is described by the expression
ΔL = α Lo ΔT
α = 
in the case of the bar the expansion is
ΔL = L_f - L₀
ΔL= 1.002 -1
ΔL = 0.002 m
the temperature variation is
ΔT = 100 - 30
ΔT = 70º C
we calculate
α = 0.002 / 1 70
α = 2,857 10⁻⁵ ºC⁻¹