Answer:
A professional basketball game depends on the association presiding over the game. An NBA game lasts for 48 minutes whereas FIBA games take 40 minutes. The total time taken to play for any specialized game is over 2 hours 15 minutes. The time includes the time disruptions like fouls, timeouts, and breaks.
<em>I hope it helps you...</em>
Passengers which are facing forward in the direction that train is moving, their bodies will move forward in application of sudden stop of train.
<h3>What is force of inertia?</h3>
Force of inertia is the force which acts in the opposite direction of the force of acceleration acting on the body.
Given infroamtion-
The passengers are facing forward in the direction that the train is moving.
The train comes to a sudden stop.
Lets see what happens step wise-
- Here, the train in moving in the forward direction and the passengers are also facing forward in the direction that the train is moving.
- Now the train comes to a sudden stop. By this sudden stop the train stops suddenly but all the object including the passengers is still travelling forward due to the inertia force.
- Thus all the passenger will tend to move in the direction as they are still travelling.
Hence, passengers which are facing forward in the direction that train is moving, their bodies will move forward in application of sudden stop of train.
Learn more about the force of inertia here;
brainly.com/question/10454047
Answer:
a) # lap = 301.59 rad
, b) L = 90.48 m
Explanation:
a) Let's use a direct proportions rule (rule of three). If one turn of the wire covers 0.05 cm, how many turns do you need to cover 24 cm
# turns = 1 turn (24 cm / 0.5 cm)
# laps = 48 laps
Let's reduce to radians
# laps = 48 laps (2 round / 1 round)
# lap = 301.59 rad
b) Each lap gives a length equal to the length of the circle
L₀ = 2π R
L = # turns L₀
L = # turns 2π R
L = 48 2π 30
L = 9047.79 cm
L = 90.48 m
Answer:
88 m/s
Explanation:
To solve the problem, we can use the following SUVAT equation:
where
v is the final velocity
u is the initial velocity
a is the acceleration
d is the distance covered
For the car in this problem, we have
d = 484 m is the stopping distance
v = 0 is the final velocity
is the acceleration
Solving for u, we find the initial velocity: