Answer:
1.047 M
Explanation:
The given reaction:
For dichromate :
Molarity = 0.254 M
Volume = 15.8 mL
The conversion of mL to L is shown below:
1 mL = 10⁻³ L
Thus, volume = 15.8 ×10⁻³ L
Thus, moles of dichromate :
Moles of dichromate = 0.0040132 moles
1 mole of dichromate react with 6 moles of iron(II) solution
Thus,
0.0040132 moles of dichromate react with 6 × 0.0040132 moles of iron(II) solution
Moles of iron(II) solution = 0.02408 moles
Volume = 23 mL = 0.023 L
Considering:
<u>Molarity = 0.02408 / 0.023 = 1.047 M</u>
Lets let our mass equal 3 on alletals and solve using d=m/v equation
Aluminum
V=3/2.70=1.11
Silver
V=3/10.5=.286
Rhenium
V=3/20.8=.144
Nickel
V=3/8.90=.337
This gives us the following list from largest to smallest Aluminum, Nickel, Silver, and Rhenium
Answer:
1& 4
Explanation:
1. The average kinetic energy of the particles in a substance determines the substance's temperature.
4. How fast a substance's particles are moving determines how hot or cold the substance is.
Answer:
Explanation:
Hello!
In this case, since the molarity of a solution is computed by dividing the moles of solute by the volume of solution in liters, we first need to compute the moles of solute knowing that the molar mass of calcium hydroxide is 74.1 g/mol as follows:
Next, since the 100-mL solution is also expressed in liters by 0.100 L, we directly compute the molarity as shown below:
Which is expressed in molar units that are mol/L.
Best regards!