Answer:
Chemical formula.
Explanation:
A chemical formula have fix proportion of atoms of elements.
Chemical formula:
A chemical formula is the way of presenting the chemical proportion of atoms of those elements, that combine to form a compound.
For example:
Water consist of two atom of hydrogen and one atom of oxygen. The atoms of both elements combine to form a compound i.e water. The atoms of both elements always combine in a fixed ratio which is 2:1 in molecule of water.
H₂O
2:1
Carbon dioxide consist of two atom of oxygen and one atom of carbon. The atoms of both elements combine to form a compound i.e carbon dioxide. The atoms of both elements always combine in a fixed ratio which is 1:2 in molecule of carbon dioxide .
CO₂
1;2
Answer:
5 moles of Fe
Explanation:
The equation of the reaction is;
2 Al(s) + Fe 2O 3(s) --> 2Fe (s) + Al 2O 3 (s)
Now;
1 mole of Fe2O3 require 2 moles of Al
3 moles of Fe2O3 requires 3 × 2/1 = 6 moles of Al
Hence Al is the limiting reactant.
If 2 moles of Al yields 2 moles of Fe
5 moles of Al yields 5 × 2/2 = 5 moles of Fe
The question does not provide the equation
Answer:-
72.89 grams
Explanation:-
The balanced chemical equation for this reaction is
CuSO4 + Fe --> FeSO4 + Cu
Molecular weight of CuSO4 = 63.55 x 1 + 32 x 1 + 16 x 4
= 159.55 gram
Atomic weight of Cu = 63.55 gram.
According to the balanced chemical equation
1 CuSO4 gives 1 Cu
∴159.55 gram of CuSO4 would give 63.55 gram of Cu.
183 gram of CuSO4 would give 63.55 x 183 / 159.55
= 72.89 grams of Cu
Answer is: mass of unused sulfur is 5.87 grams.
Balanced chemical reaction: C + 2S → CS₂.
m(C) = 12.0 g; mass of carbon.
m(S) = 70.0 g; mass of sulfur.
n(C) = m(C) ÷ M(C).
n(C) = 12 g ÷ 12 g/mol.
n(C) = 1 mol; amount of substance.
n(S) = m(S) ÷ M(S).
n(S) = 70 g ÷ 32.065 g/mol.
n(S) = 2.183 mol.
From chemical reaction: n(C) : n₁(S) = 1 : 2.
n₁(S) = 1 mol · 2 = 2 mol.
Δn(S) = n(S) - n₁(S).
Δn(S) = 2.183 mol - 2 mol.
Δn(S) = 0.183 mol; amount of unused sulfur.
Δm(S) = 0.183 mol · 32.065 g/mol.
Δm(S) = 5.87 g.
The answer is dipole dipole interactions