Answer:
The carbons of the acetyl group oxidize which generate CO2, and in turn H2O.
Explanation:
The pyruvic acid that is generated during glycolysis enters the mitochondria. Inside this organelle, the acid molecules undergo a process called oxidative decaborxylation in which an enzyme of several cofactors is involved, one of which is coenzyme A. Pyruvic acid is transformed into an acetyl molecule and these are been introduced to the begining of the Krebs Cycle where the acetyl-group (2C) from acetyl-CoA is transferred to oxaloacetate (4C) to produce citrate (6C). As the molecule cycles the two carbons of the acetyl oxidize and are released in the form of CO2. Then the energy of the Krebs cycle becomes sufficient to reduce three NAD +, which means that three NADH molecules are formed. Although a small portion of energy is used to generate ATP, most of it is used to reduce not only the NAD + but also the FAD which, if oxidized, passes to its reduced state, FADH2
Answer:
See explanation and image attached
Explanation:
Aromatic compounds undergo electrophilic aromatic substitution reactions in which the aromatic ring is maintained.
Substituted benzenes may be more or less reactive towards electrophilic aromatic substitution than benzene depending on the nature of the substituent present in the ring.
Substituents that activate the ring towards electrophilic substitution such as -OCH3 are ortho-para directing.
The major products of the bromination of anisole are p-bromoanisole and o-bromoanisole. The resonance structures leading to these products are shown in the image attached.
Answer:
Ability to be bent = Malleability
Identity = Physical Change
Electrical Current = Conductivity
Dissolve = Solubility
Color, Phase, or Hardness = Physical Property
Answer: A
Explanation:
Because I just answered it and it’s right. ( Forces between electron pairs push the atoms apart.