Answer:
B) Iron (c=0.45 J/g°C)
Explanation:
Given that:-
Heat gain by water = Heat lost by metal
Thus,
Where, negative sign signifies heat loss
Or,
For water:
Mass = 120 g
Initial temperature = 21.8 °C
Final temperature = 24.5 °C
Specific heat of water = 4.184 J/g°C
For metal:
Mass = 40.2 g
Initial temperature = 99.3 °C
Final temperature = 24.5 °C
Specific heat of metal = ?
So,
<u>This value corresponds to iron. Thus answer is B.</u>
Answer:
c and d are correct
Explanation:
In A, false because in Valence Electrons, the more the valences, the more stable an atom is.
In B, false because atoms cannot readily gain or lose valence electrons as the number of valence electrons is determined by the column they are in.
In C, true because the more the valence electrons, the more the stability of an atom.
In D, true as electron placing is important and the reactivity of an atom is important.
So C and D are true!
Answer:
1. BF3 This is a trigonal planar molecule; the electron density is drawn into a cloud that circles the Boron, this is made nonpolar by the geometrically equivalent structure of the surrounding electronegative Fluorines.
2. H2O The 2 lone pairs of e- of Oxygen makes the O partially negative, the H’s, partially positive. Polar.
3. NF3 Lone pair on Nitrogen overwhelmed by the 3 incredibly electronegative Fluorines. Polar
4. CH3Br The “Soft Ion” of Bromine is negative; it is electronegative. Polar.
5. SO2 the lone pairs of Oxygen, at approximately 119°-120° angles to one another will form a reasonance structure; there will be more lone pairs about the Oxygen than the Sulfur; the Sulfur will be partially positive compared to the oxygens. Polar.
Answer:
Sn₃(PO₄)₄ - tin(IV) phosphate.
Explanation:
Hope it helps! :)